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We present a hierarchical neural network model, in which subpopulations of neurons develop fixed and
regularly repeating temporal chains of spikes (polychronization), which respond specifically to randomized
Poisson spike trains representing the input training images. The performance is improved by including
top-down and lateral synaptic connections, as well as introducing multiple synaptic contacts between each pair
of pre- and postsynaptic neurons, with different synaptic contacts having different axonal delays. Spike-
timing-dependent plasticity thus allows the model to select the most effective axonal transmission delay
between neurons. Furthermore, neurons representing the binding relationship between low-level and high-
level visual features emerge through visually guided learning. This begins to provide a way forward to solving
the classic feature binding problem in visual neuroscience and leads to a new hypothesis concerning how
information about visual features at every spatial scale may be projected upward through successive neuronal
layers. We name this hypothetical upward projection of information the “holographic principle.”
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Many early neural network models of brain function assumed
that neurons transmit information exclusively through modulation
of their mean firing rates. These “rate-coded” models represented
only the current average firing rate of each neuron and did not
explicitly represent the timings of the action potentials or “spikes”
emitted by cells. However, in modern literature, the precise timing
of spikes has been proposed to strongly contribute to encoding in
the brain (Akolkar et al., 2015; Fujii, Ito, Aihara, Ichinose, &
Tsukada, 1996; Nikolic, Fries, & Singer, 2013). Consistent with
this view, there is growing evidence from neurophysiological
studies supporting the importance of spike-timing dynamics in the
brain (Lindsey, Morris, Shannon, & Gerstein, 1997; Mao, Hamzei-
Sichani, Aronov, Froemke, & Yuste, 2001; Prut et al., 1998;
Softky, 1995). In the current study, we investigate the behavior of
a biologically realistic hierarchical neural network model of the
primate ventral visual system.

In particular, we explore how the network model develops
during training stimulus representations in the form of fixed and

regularly repeating temporal chains of spikes emitted by subpopu-
lations of neurons even when the input images are represented by
randomized Poisson spike trains. To elaborate further, visual stim-
uli are represented by specific subpopulations of input neurons
with set firing rates, but where the spikes emitted by each neuron
have randomized spike times set according to a Poisson probability
distribution. However, even though the spike times of the input
neurons are randomized, as activity is propagated upward through
the layers of the network, we see the gradual emergence of
regularly repeating spatiotemporal spike patterns in the output
layer. This phenomenon is known as polychronization. The emer-
gence of spatiotemporal spike chains should be contrasted with the
notion of spike synchronization, in which a subpopulation of
neurons emits their spikes at the same time. In the simulations
reported in this article, we show that polychronization emerges
naturally when the model incorporates distributions of nonzero
axonal conduction delays of the order of a few milliseconds, which
forces neurons to emit their spikes in spatiotemporal chains. After
training the network on a set of visual stimuli, we show that
different stimuli are represented by distinct spatiotemporal spike
patterns in the output layer, which maintain their temporal struc-
ture across different presentations of the same stimulus with dif-
ferent input spike times. Such a subpopulation of neurons, which
displays regularly repeating spatiotemporal spike patterns, is
known as a polychronous group (PG). In order to facilitate this
learning process in the simulations, we also explore a mechanism
of synaptic delay selection with a biologically plausible learning
mechanism: spike-timing-dependent plasticity (STDP).

Building on the above work demonstrating the emergence of
polychronization, we also investigate a potential approach to solv-
ing the classic feature binding problem in visual neuroscience,
which concerns how the brain represents the relationships between
visual features within a scene. In particular, we are interested in
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how the visual brain can learn to represent the rich hierarchical
binding relations between lower and higher level features at every
spatial scale across the visual field as discussed by Duncan and
Humphreys (1989). It has been proposed that this type of repre-
sentation cannot be achieved within a traditional rate-coded model,
in which the times of spikes are not explicitly represented because
of the phenomenon known as the “superposition catastrophe” (von
der Malsburg, 1999). However, in our spiking neural network
simulations, we show that the emergence of polychronization leads
to a way in which the network may learn to represent these
hierarchical binding relations. Specifically, we show the emer-
gence of what we have called binding neurons embedded within
the spatiotemporal spike chains. Binding neurons represent the
binding relationships between low-level and high-level visual fea-
tures. Such neurons were originally proposed by von der Malsburg
(1999). However, it has not previously been shown how these
neurons may develop naturally through a biologically plausible
process of visually guided learning and self-organization of poly-
chronous groups. In our simulations, we show the emergence of
binding neurons that encode binding relationships between visual
features across the entire visual field and at every spatial scale.
These binding neurons, which develop automatically within the
regularly repeating spatiotemporal spike chains during visual train-
ing, thus begin to provide a way forward to solving feature binding
in primate vision.

Lastly, we show how our proposed mechanism for solving the
feature binding problem automatically leads to the bottom-up (feed-
forward) projection of visual information about lower level visual
features, and indeed visual features at every level, through successive
neuronal layers to the highest (output) layer of the network. We refer
to this as the holographic principle. This may be important if subse-
quent brain areas that guide behavior are only able to read out visual
information from the highest stages of the visual system.

Temporal Coding and Polychronization

In the brain, neurons represent information and communicate with
each other by pulses in their somatic membrane potential, called
action potentials or spikes. The activity of a somatic spike propagates
down the axon of the neuron, causing neurotransmitters to be released
from multiple presynaptic axon terminals into their corresponding
synaptic clefts. Binding of the neurotransmitters to the receptors of the
postsynaptic dendrites causes a change in the electrical activity of the
postsynaptic neurons, constituting a communication of information
from the presynaptic neuron to the postsynaptic neuron. This neuron
also spikes if the excitation of this postsynaptic neuron from its
afferent synapses increases the membrane potential above its firing
threshold potential. Raising the membrane potential of the postsyn-
aptic neuron above the firing threshold generally requires the activa-
tion of afferent synapses within a brief temporal window, as the
membrane potential naturally decays quickly back to a resting poten-
tial without further afferent excitatory activation.

The relative timings of the spikes emitted by a pair of pre- and
postsynaptic neurons has also been shown to affect learning
through spike-timing-dependent changes in synaptic efficacy (Bi
& Poo, 1998; Markram, Lubke, Frotscher, & Sakmann, 1997), and
hence how information and representations are stored and propa-
gated in the network. If a presynaptic neuron fires in a short time
period (up to tens of milliseconds) prior to the postsynaptic neuron

firing, the synaptic efficacy increases. An increase in synaptic
efficacy is known as long-term potentiation (LTP). If the presyn-
aptic neuron instead fires in a short period of time following the
firing of a postsynaptic neuron, the efficacy of the synapse is
reduced. This reduction in synaptic efficacy is known as long-term
depression (LTD). These forms of LTP and LTD, which depend on
the relative timings of the pre- and postsynaptic neurons, are
known as STDP. Compared with firing rate based synaptic learn-
ing rules employed in rate-coded models, an STDP learning rule
can result in very different self-organization of the synaptic con-
nectivity in the network when trained on visual scenes containing
multiple objects (Evans & Stringer, 2012, 2013).

In a spiking neural network, individual neurons may operate as
“coincidence detectors” (Abeles, 1991; Jeanson, 2011). That is, a
postsynaptic neuron will fire if spikes from a number of presynaptic
neurons arrive within a relatively brief time window of the order of a
few milliseconds. This will be the case if the neuronal and synaptic
time constants of the postsynaptic neuron are relatively brief, allowing
for a fast decay in the cell membrane potential between incoming
presynaptic spikes. In this situation, the presynaptic spikes must arrive
close together in time in order to combine together to drive up the
postsynaptic cell membrane potential to reach its firing threshold. A
simple example of a coincidence-detecting neuron is shown in Figure
1a. In the figure, Neurons 1 and 2 represent low-level features such as
horizontal and vertical bars, respectively, whereas Neuron 3 is a
coincidence detecting neuron that represents a high-level feature or
object such as the alphabetic letter “T.” Neuron 3 only fires if the
spikes emitted by Neurons 1 and 2 arrive at Neuron 3 close together
in time. This means that the response of Neuron 3 is sensitive not only
to which presynaptic neurons are firing but also to the precise timings
of their spikes. As can be seen from this example, such a coincidence
detecting neuron can provide a way of constructing higher level
symbols through combination of elementary features, and do this in a
way that utilizes temporal coding that depends on the timings of
spikes.

Simulation studies have shown that if the synaptic connections
within a large population of neurons have axonal transmission delays
that are drawn from a random distribution of variable magnitudes,
from say a few milliseconds to several tens of milliseconds, then
groups of coincidence detecting cells emerge through STDP (Izhikev-
ich, Gally, & Edelman, 2004). Furthermore, the network develops
repeating temporal chains of spiking activity distributed across sub-
groups of coincidence detecting neurons, that is, neurons firing in a
well-defined temporal sequence. This is referred to as polychroniza-
tion (Izhikevich, 2006). Each subgroup of coincidence detecting neu-
rons that comes together to form a regularly repeating temporal chain
of activity is known as a polychronous group (PG). It has been
hypothesized that each PG could represent a particular sensory (e.g.,
visual) stimulus such as the letter T or perhaps episodic memory
(Izhikevich, 2006). Figure 1b illustrates an example in which a hor-
izontal bar, a vertical bar, and a character T are represented by
different PGs. In theory, polychronization in spiking networks can
offer a dramatic increase in representational capacity compared with
rate-coded models that do not exploit the timings of spikes (Izhikev-
ich, 2006).

Paugam-Moisy, Martinez, and Bengio (2008) have recently exam-
ined how PGs selectively respond to artificial input patterns after
training with STDP and shed light on the potential of utilizing PGs for
real-life machine learning tasks such as handwritten digit recognition.
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However, the study carried out by these authors did not address three
key issues as follows. First, the study carried out by Paugam-Moisy et
al. used carefully ordered spike trains to represent input images, which
is not biologically plausible. What would happen if the input spike
trains contained much more random variation, as would be expected
in the brain? Second, their model did not incorporate multiple syn-
aptic connections with different randomized axonal transmission de-
lays between each pair of pre- and postsynaptic neurons. This meant
that the axonal transmission delay between any pair of neurons was
fixed to a single value and could not be effectively selected from a
number of alternatives by STDP learning. Consequently, the set of
possible PGs that a neuron could participate in was limited before
learning. Third, and perhaps most importantly, Paugam-Moisy et al.’s

study did not investigate how feature binding representations, which
explicitly encode the binding relations between low and high-level
features, might develop through polychronization within a hierarchi-
cal model of visual processing. In the simulations presented in this
article, we investigate each of these three issues in a hierarchical
spiking neural network model of the primate ventral visual pathway,
which is tasked with learning representations of the shapes of two-
dimensional visual objects.

The Binding Problem and a Limitation of Rate Coding

Descriptions of the binding problem vary but generally address
the same question: How does the visual system represent which

(a) Coincidence Detecting Neuron 
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Figure 1. (a) Example of coincidence detecting neuron arrangement. Neurons 1 and 2 represent two
different low-level features: a horizontal bar and a vertical bar, respectively. Neuron 3 is a coincidence
detecting neuron that represents a high-level feature, namely, the alphabetic letter T. Neuron 3 only fires
if the spikes emitted by Neurons 1 and 2 arrive at Neuron 3 close together in time. The action potentials
of Neurons 1 and 2 propagate activity to Neuron 3 with delays of 4 ms and 2 ms, respectively. If the action
potential of Neuron 1 occurs approximately 2 ms before the action potential of Neuron 2, their propagating
activity will arrive simultaneously at Neuron 3 and cause it to spike. Neurons 1 and 2 represent the
component vertical and horizontal bars comprising a letter T. In reality, the horizontal and vertical bars, as
well as the letter T, would each be represented by a unique polychronous group (PG) of neurons. (b)
Example of PG representation of stimulus. A horizontal bar is represented with a PG consisting of Neurons
1– 8, a vertical bar is represented with a PG consisting of Neurons 9 –16, and a character T is represented
with a PG consisting of Neurons 17–24. The red circles represent neurons that are active at different times
and form polychronous chains. The red circles toward the beginning and end of the time sequences that have
thicker black boundaries represent the trigger neurons for chains of spiking neurons that represent a
particular visual input (see Polychronous Group Counting for a mathematical description of such trigger
neurons). See the online article for the color version of this figure.
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elementary features are bound together to form an object? For
example, if the two letters T and L are seen together, how does the
visual system represent which horizontal and vertical bars are part
of which letter? In traditional hierarchical rate-coded visual pro-
cessing models (e.g., Fukushima, 1980; Riesenhuber & Poggio,
1999; Wallis & Rolls, 1997), simple features (such as horizontal
and vertical bars) are represented in the lower visual layers,
whereas more complex features (such as letters) are represented in
the higher visual layers. However, without a solution to the feature
binding problem, there is no way of reading off which bars are part
of which letters, and hence where the object’s constituent compo-
nents are in space.

The underlying weakness of rate coding is well illustrated in
the classical example of Rosenblatt (1961), which was further
explained by von der Malsburg (1999). As Figure 2 illustrates,
the example supposes we have a neural network with four
output neurons. Output Neurons A and B represent the triangle
and square, respectively, invariant to retinal position (top or
bottom). Output Neurons C and D are instead location specific,
responding to both objects in either the top or bottom location,
respectively. When a single object is presented to the network,
the responses of the four neurons provide sufficient information
to decode both the shape and position of the object. On the other
hand, when both objects are presented together, each at a
different location, all of the output neurons become highly
active; it is no longer clear whether the triangle or the square is
in the top retinal location. Thus, the coactivation results in a
merging of representations and a loss of information that could
have been used to divide the scene into its components. This
breakdown is referred to as the superposition catastrophe (von
der Malsburg, 1999). Similar problems were recently reported
in a study modeling the development of border ownership
representations in the early visual cortex, driven by top-down

modulation from higher layers (Eguchi & Stringer, 2016). This
rate-coded model produced neuron responses characterizing
border ownership cells in V1. However, these representations
catastrophically failed upon the presentation of multiple visual
stimuli because of the inability of the rate-coded model to
provide spatially selective top-down modulation.

In short, the crucial problem with rate coding is the lack of
means to represent information regarding which specific low-
level/elementary features have been combined to construct higher
level features or objects. Moreover, binding of visual features must
operate across the entire visual field and at all spatial scales within
a visual scene. How features are bound together underpins how we
segment a visual scene into objects and parts of objects, and thus
how we make sense of the visual world.

Thus, solving the binding problem is essential to understanding
the ability of the primate visual brain to make sense of complex
visual scenes, and to developing a next generation of far more
powerful computer vision systems with the ability to understand
what they are looking at in the same way as the brain. Our
simulation results suggest that binding is a much richer phenom-
enon than traditionally described by visual psychologists. Indeed,
the binding mechanism proposed here is potentially so rich that it
would be difficult to describe the process at a high psychological
level; it requires a description at the neuronal level as presented in
this article.

Background Theory, Research Questions, and Hypotheses

We investigate the behavior of a biologically realistic hierarchi-
cal neural network model of the primate ventral visual system that
incorporates the following key aspects of cortical dynamics and
architecture:

Figure 2. Rosenblatt’s (1961) example of a binding problem in a rate-coded network. Left: The input from a
visual scene is presented to a neuronal population including a set of four output Neurons A, B, C, and D. The
firing rate responses from Neurons A to D, respectively, represent the presence of the following: a triangle, a
square, an object in the “top” position, and an object in the “bottom” position. Right: The responses of output
Neurons A to D when four different scenes are presented to the network. It can be seen that when only a single
object is presented, the network can represent both the object and its position. However, when both objects are
presented together, although the network is able to represent that both objects are present, it fails to represent the
actual position of each object. See the online article for the color version of this figure.
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• The model implements spiking neural dynamics in which
the timings of action potentials or “spikes” are simulated
explicitly.

• STDP is used to modify the synaptic connections during
visually guided learning. If a spike from a presynaptic
neuron arrives at a postsynaptic neuron just before the
postsynaptic neuron emits a spike, then the synapse is
strengthened (LTP). Otherwise, if the spike from the pre-
synaptic neuron arrives at the postsynaptic neuron just
after the postsynaptic neuron emits a spike, then the syn-
apse is weakened (LTD).

• The network architecture incorporates bottom-up, top-down,
and lateral synaptic connections reflecting the known archi-
tecture of the visual cortex.

• The synaptic connectivity between neurons incorporates dis-
tributions of axonal conduction delays of varying durations,
from a few milliseconds to tens of milliseconds.

• In some simulations, network performance is enhanced by
incorporating multiple synaptic connections between each
pair of pre- and postsynaptic neurons, where these connec-
tions have different axonal transmission delays. This permits
STDP to strengthen just one (or a subset) of these connec-
tions in order to effectively select the functional transmission
delay between the two neurons (Deger, Helias, Rotter, &
Diesmann, 2012; Fares & Stepanyants, 2009).

Using this underlying model architecture, the current study
investigates the following hypotheses: emergence of polychroni-
zation, emergence of binding neurons, and “holographic principle”
in the brain.

Emergence of Polychronization

During the initial period of visually guided learning, the network
is trained on a set of visual stimuli that are encoded in the input
layer by spiking neurons with randomized Poisson distributions of
spikes. That is, the spike patterns representing the stimuli in the
input layer have no special temporal structure, except that the
average firing rates of the input neurons are set in accordance with
the outputs of Gabor filters that simulate the responses of simple
cells in visual area V1. Nevertheless, it was hypothesized that the
initial period of visually guided learning with STDP would lead to
the development of large numbers of regularly repeating PGs in
the higher layers of the network, where individual PGs respond
selectively to particular stimuli. Moreover, it was hypothesized
that the emergence of large numbers of stimulus-selective PGs
would increase the representational capacity of the network be-
yond that offered by a localist rate-coded representation in that,
after training, the number of stimulus-specific PGs would be
significantly greater than the number of single cells that responded
selectively to a particular stimulus. The representational capacity is
thus increased if the network encodes visual stimuli using temporal
spike trains distributed over PGs of neurons rather than relying on
the average firing rate responses of individual neurons.

Emergence of Binding Neurons

It was hypothesized that the emergence of PGs in the higher
layers of the network during visually guided training with STDP
could begin to provide a way forward to solving the classic feature

binding problem in visual neuroscience. That is, how may the
network learn to represent the hierarchical binding relations be-
tween low-level features such as horizontal or vertical bars and
high-level features or objects such as the alphabetic letters T and
L? Specifically, we hypothesized that some cells within PGs,
which we will call binding neurons, will become tuned through
STDP learning to respond if a neuron or subset of neurons repre-
senting a specific low-level feature is participating in driving
neurons representing a particular high-level feature or object,
which may be represented in a higher layer. In this case, the
binding neuron carries measurable information that the low-level
feature (such as a vertical bar at a particular retinal location) is part
of the higher level feature or object (such as the letter T). Such
binding neurons were originally proposed by von der Malsburg
(1999), but without an explanation of how they might emerge
naturally during visual development. We now propose, and dem-
onstrate in the simulations presented later, that such binding neu-
rons may develop automatically within the PGs that emerge during
visually guided learning with STDP.

Here, we present a simple explanation for how such binding
neurons may develop. An actual example is given in Figure 3a.
Consider a linked set of three neurons at different stages of the
ventral visual pathway: (1) Neuron 1 (in a lower visual layer)
represents a low-level visual feature, (2) Neuron 2 (in a higher
visual layer) represents a high-level visual feature, and (3) Neuron
3 is a hidden neuron within a local layer, say, the same layer as
either Neuron 1 or 2, which may learn to become a binding neuron.
Assume that there are the following three synaptic connections
between these three neurons: (1) a connection from Neuron 1 to
Neuron 2, (2) a connection from Neuron 1 to Neuron 3 (this could
be either a lateral or bottom-up connection depending on which
layer Neuron 3 is in), and (3) a connection from Neuron 2 to
Neuron 3 (this could be either a lateral or top-down connection
depending on which layer Neuron 3 is in).

Let us denote the axonal delay from neuron j to neuron i as �(i,j).
Then Neuron 1 is participating in driving Neuron 2 if, and only if,
a spike emitted by Neuron 2 occurs approximately �(2,1) after a
spike emitted by Neuron 1.

If we have a set of three axonal delays such that

�(3,1) � �(2,1) � �(3,2), (1)

then the spikes from Neurons 1 and 2 will converge on Neuron 3
(near) simultaneously if, and only if, Neuron 1 is participating in
driving Neuron 2.

It is assumed that the hidden Neuron 3 operates as a “coinci-
dence detector,” and fires only when the volley of spikes from
Neurons 1 and 2 arrive (near) simultaneously. In this case, Neuron
3 will behave as a binding neuron. That is, Neuron 3 will fire if,
and only if, Neuron 1 is participating in driving Neuron 2. In this
case, STDP will further strengthen the connections from Neurons
1 and 2 onto the Binding Neuron 3.

It is important that an ideal binding neuron responds if, and only
if, the neurons representing the low-level feature are actually
participating in driving the neurons representing the high-level
feature. The binding neuron should not respond if the neurons
representing the low-level feature and the neurons representing the
high-level feature just happen to be coactive, in which the former
are not actually driving the latter. Such unrelated coactivation of
low- and high-level features might occur, for example, because of
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the presence of multiple similar objects within a complex natural
scene as explained earlier with Rosenblatt’s (1961) example (see
Figure 2). Suppose a T and L are presented together, then the
neurons representing the horizontal bar of the T are coactive with
the neurons representing the letter L, but the former are not driving
the latter. Thus, the corresponding binding neuron, which would

represent that the given horizontal bar was part of the L, should not
fire. This kind of temporally specific response is characteristic of
a PG, which the three neurons—Neurons 1, 2, and 3—described
above comprise.

We hypothesize that with the inclusion of bottom-up, top-down,
and lateral connections, there are a variety of possible local net-
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Figure 3. (a) Example of a hypothetical binding neuron. Consider a linked set of three neurons at different
stages of the ventral visual pathway: Neuron 1 (in a lower visual layer) represents a low-level visual feature such
as a vertical bar, Neuron 2 (in a higher visual layer) represents a higher level visual feature such as the letter T,
and Neuron 3 is a binding neuron within a local layer, say, the same layer as either Neuron 1 or 2. Importantly,
there are nonzero axonal transmission delays in the connections between these three neurons. In this example,
the delays are as follows: The delay from Neuron 1 to Neuron 2 is 3 ms, the delay from Neuron 2 to Neuron
3 is 3 ms, and the delay from Neuron 1 to Neuron 3 is 6 ms. With the particular set of axonal delays given in
this example, Neuron 3 will fire if, and only if, Neuron 1 is participating in driving Neuron 2. If Neuron 3 fires,
this will encode the fact that the low-level feature (vertical bar) represented by Neuron 1 is part of the higher
level feature (the letter T) represented by Neuron 2. (b) Polychronous group (PG) representation of binding.
Here, we illustrate how a low-level feature such as a vertical bar may in fact be represented by its own temporal
pattern of spikes distributed across a PG of neurons (shown bottom left), the high-level feature or object such
as a letter T may also be represented by its own PG (shown top right), and these two PGs may drive a third PG
representing the binding relationship between the vertical bar and the letter T (shown bottom right). This more
complex scenario, in which the visual features and the binding relations between these features are represented
by patterns of spiking activity across their own PGs, is likely to be what actually happens in the brain. The simple
three-neuron circuit shown in 3a would then be a small part of the three corresponding PGs (representing a
vertical bar, letter T, and binding relation between these two features) shown in 3b. See the online article for the
color version of this figure.
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work architectures that could self-organize through competitive
learning to implement this, with the binding neurons being in any
of the nearby lower or higher layers. Wherever the binding neuron
is, its activation would still represent that a particular low-level
feature is driving the representation of a specific high-level feature
or object, and is therefore part of the object. A population of such
binding neurons would specify which low-level features within a
scene were part of which high-level features or objects, and this
information could be read out directly by higher level neurons in
the network.

This process could operate across the entire visual field and at
every spatial scale within the visual field. Indeed, binding neurons
would be expected to emerge throughout successive levels of the
feature hierarchy within the network. A rich tapestry of binding
neurons through the layers could help to provide a hierarchical struc-
tural description of a scene. This proposal may explain why the visual
system needs extensive top-down connections between layers and
lateral connections within layers in addition to bottom-up connec-
tions.

However, in the brain, it is in fact likely that a low-level feature
such as a vertical bar and a high-level feature such as the letter T,
as well as the binding relationship between these features, would
each be represented by their own temporal pattern of spikes
distributed across PGs of neurons. This is illustrated in Figure 3b.
The binding relations are then represented by PGs (rather than
individual neurons), which are replayed if, and only if, the low-
level feature is part of the high-level feature. In this scenario, the
simple three-neuron circuit shown in Figure 3a would be a small
part of the three corresponding PGs (representing a vertical bar,
letter T, and binding relation between these two features) shown in
Figure 3b. However, in the simulations reported later we focus on
identifying individual binding neurons that are part of three-neuron
circuits of the general form shown in Figure 3a.

In this investigation, we specifically look at the emergence of
such binding neurons among the learned neuronal representations
of three simple visual shapes shown in Figure 4, which are
presented to the network during visually guided training. We
expected to find evidence for the kind of three-neuron binding
relationships described earlier and illustrated in Figure 3a.
These three-neuron PGs provide the simplest examples of how
the network may learn to represent binding relationships in
which specific low-level features are part of particular high-
level features or objects.

Feedforward Projection of Information About Low-Level
Visual Features to Higher Neuronal Layers

The earlier discussion of binding neurons leads directly to a new
hypothesis concerning how information about visual features may
be projected in a bottom-up (feedforward) manner through suc-
cessive layers of the network. This might be a useful operation if
the behavioral systems of the brain are limited to reading out visual
information from the highest layers of the visual system. For
example, it is generally conceived that simple visual features such
as oriented edges and bars are represented in early cortical visual
areas such as V1 and V2, whereas whole objects and faces are
represented in higher visual areas. However, when we look at a
visual scene, we are perceptually aware of visual features of
varying levels of complexity and scale. Does this imply that
information about low-level visual features is being projected
directly upward through the visual system in some way that
preserves the identity of these features, and at the same time also
represents the image context of these features (i.e., binding rela-
tionships with higher level features)?

Figure 5a shows one simple way in which our network archi-
tecture might achieve this. The illustration is very similar to that
shown in Figure 3a, except that the Binding Neuron 3 is now in the
upper layer, that is, the same layer as Neuron 2, which represents
the high-level feature T. Neuron 3 represents the fact that there is
a vertical bar in some local region of the retina, which is part of the
letter T. In this way, information about the low-level feature
(vertical bar at a particular retinal position) along with its image
context (the vertical bar is part of the letter T) has been projected
up to the same layer as the representation of the high-level feature
(the T). This is essentially the same binding mechanism discussed
earlier, but where the binding neuron is situated in the same higher
layer as the neuron representing the high-level feature. This mech-
anism for the bottom-up projection of information about low-level
features to higher layers, where this information is modulated by
local image context (i.e., the low-level feature is part of a particular
high-level feature), may again operate up through successive neu-
ronal layers, and hence across the entire visual field and at every
spatial scale.

It is possible that the mechanism shown in Figure 5a could be
repeated iteratively up through the layers. For example, Figure 5b
shows an example in which information about the vertical bar is
first projected up from the first layer to the second layer, where it
is represented by Binding Neuron 3. Neuron 3 represents the fact

Stimulus 1 Stimulus 2 Stimulus 3 

Figure 4. A set of three visual stimuli presented to the network: a circle, a heart, and a star.
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that there is a vertical bar in a local region of the retina, which is
part of the letter T. Then, a similar binding mechanism combines
the output from Binding Neuron 3 with the output of Neuron 5
representing a cat, where these combined outputs drive Binding
Neuron 6. Binding Neuron 6 then represents the fact that there is
a vertical bar in a local region of the retina, which is part of the
letter T, which, in turn, is part, of the word CAT. In this case,
the information about the lowest level feature is preserved in the
highest layer of the network. Indeed, it is theoretically possible that
a very large amount of information could be projected upward in
this manner and preserved in the highest layers for readout by
subsequent behavioral systems. We refer to this as a holographic
principle for spiking network models of biological vision, because
information about visual features at every level of complexity and
scale may be preserved in the highest layers.

It is important to note that the Binding Neurons 3 and 6 in the
highest layers of the two network architectures shown in Figures
5a and 5b represent the presence of a vertical bar in some local
region of the retina that is explicitly part of a higher level feature
(e.g., the letter T) or hierarchy of features (e.g., the letter T, which
is part of the word CAT). Thus, these binding neurons do not
simply respond to the presence of a vertical bar at some retinal
location regardless of local image context (i.e., the higher level
features/objects that the vertical bar is part of). So the high-level
feature/object still needs to be presented to the network in order to
elicit a response from these kinds of binding neuron in the upper
layers. Thus, the holographic principle described here is consistent
with neurophysiological observations that neurons in the later
stages of the ventral visual pathway tend to respond to more

complex visual forms than the simple oriented bars represented in
early cortical stages such as V1 and V2.

Effect of Varying Key Model Parameters

The study also investigates the effects of the following archi-
tectural, neuronal, and synaptic parameters on the number of PGs
and binding neurons that develop in the network during visually
guided training:

• Synaptic connectivity. The investigation will explore the
performance of the network with the following synaptic
connectivities: (a) purely bottom-up, (b) bottom-up and
top-down, (c) bottom-up and lateral, and (d) bottom-up,
top-down, and lateral. We test which of these architectures
best promotes the emergence of polychronization includ-
ing the representation of visual stimuli by stimulus-
specific PGs.

• STDP time constant. We hypothesize that a longer STDP
time constant will lead to less temporal sensitivity to spike
times in the network, which will lead to the model oper-
ating in a more rate-coded manner. This, in turn, may
reduce the emergence of polychronization including the
number of stimulus-specific PGs that develop.

• Multiple synaptic connections between each pair of pre-
and postsynaptic neurons. Within a network with multiple
synaptic contacts (each with a different axonal delay) be-
tween each pair of pre- and postsynaptic neurons, we hypoth-
esize that STDP will effectively select which delays to
strengthen. If STDP is able to selectively strengthen just one

CAT CAT 

1 

2 3 

I 

T I T 

3 ms 

3 ms 

6 ms 

5 6 4 

2 ms 

I T CAT T 
2 ms 

4 ms 

3 ms 

2 ms 

1 

2 3 

I 

T I T 

3 ms 

3 ms 

6 ms 

(a) (b) 

Figure 5. Illustrations of how the proposed binding mechanism may project information about low-level visual
features such as a vertical bar up through successive layers of the network. The illustration shown in (a) is very
similar to that shown in Figure 3a, except that the Binding Neuron 3 is now located in the upper layer, that is,
the same layer as Neuron 2 that represents the high-level feature T. Neuron 3 represents the fact that there is a
vertical bar in some local region of the retina, which is part of the letter T. In this way, information about the
low-level feature (vertical bar at a particular retinal position) along with its image context (the vertical bar is part
of the letter T) has been projected up to the same layer as the representation of the high-level feature (the T).
(b) Shows how the mechanism illustrated in (a) could be repeated iteratively up through the layers. Now, a
similar binding mechanism combines the output from Binding Neuron 3 with the output of Neuron 5
representing a cat, where these combined outputs drive Binding Neuron 6. Binding Neuron 6 then represents the
fact that there is a vertical bar in a local region of the retina, which is part of the letter T, which, in turn, is part
of the word CAT. In this case, the information about the lowest level feature (a vertical bar) is preserved in the
highest layer of the network.
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(or a subset) of the connections, this should help to promote
the emergence of polychronization. For example, if each pair
of pre- and postsynaptic neurons has two synaptic contacts
with quite different axonal delays, then it is expected that
STDP will increase one connection but weaken the other. We
hypothesize that this will, in turn, increase the number of PGs
in the network with maximum information for a particular
stimulus.

Model and Performance Measures

Model

Network architecture. The neural network model investigated
is shown in Figure 6 and simulates successive neuronal stages of
processing along the primate ventral visual pathway. This model was
simulated using the SPIKE simulator (see Appendix for link). Spe-
cifically, the model is comprised of four layers of excitatory pyrami-
dal neurons, which may be thought of as representing cortical visual
areas V2, V4, posterior inferior temporal cortex, and anterior inferior
temporal cortex. There are modifiable bottom-up (feedforward) and
top-down (feedback) synaptic connections between excitatory pyra-
midal neurons in successive layers as well as modifiable lateral
synapses between excitatory pyramidal neurons within each layer.
Some simulations explore the importance of the top-down and lateral
connections for polychronization and feature binding by comparing

model performance with and without them. Within each layer, there
are also inhibitory interneurons with nonplastic lateral synaptic con-
nections to and from the excitatory neurons to produce competition
between the excitatory neurons. For all presented simulations, we
used 64 � 64 � 4,096 excitatory neurons and 32 � 32 � 1,024
inhibitory neurons in each layer, with a fixed number of sparsely
distributed topologically organized connections. Table 1a shows the
different numbers of afferent connections onto each postsynaptic
neuron, as well as the fan-in radius of these connections, for the
different types of excitatory-excitatory, excitatory-inhibitory, and
inhibitory-excitatory connections between and within the four neuro-
nal layers. The models are developed using the GPGPU based Spik-
ing Neural Network Spike! (See Appendix link).

Differential equations. As originally described in Evans and
Stringer (2012), each neuron is based upon the standard conductance-
based leaky integrate and fire (LIF) model, whereas the equations for
STDP at the Excitatory-Excitatory (E ¡ E) synapses are adapted
from Perrinet, Delorme, Samuelides, and Thorpe (2001). Neuron and
synapse constants were chosen to be as biologically realistic as pos-
sible based upon the available neurophysiological literature (see Table
1 for a full list).

Cell equations. The neuron’s membrane potential is updated
according to Equation 2:

�m
� dVi(t)

dt � V0
�

� Vi(t) � R�Ii(t) (2)

Inhibi on
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Figure 6. Schematic of the four layer neural network architecture investigated. The model represents succes-
sive neuronal stages of processing along the primate ventral visual pathway. The model is comprised of five
layers of excitatory pyramidal neurons, which may be thought of as representing cortical visual areas V1, V2,
V4, posterior inferior temporal cortex (TEO) and anterior inferior temporal cortex (TE). The layer 0 reflects the
output of the Gabor filters of the visual input presented to the network, with an imposed Poisson spike rate of
neurons in the layer. These neurons establish only feed-forward connection to the layer 1. Each of the following
layers of the model (layer 1–4) consists of 64 � 64 � 4096 excitatory neurons and 32 � 32 � 1024 inhibitory
neurons. Excitatory modifiable connections (red) include bottom-up (feedforward) and top-down (feedback)
connections between excitatory pyramidal neurons in successive layers, and lateral connections between
excitatory pyramidal neurons within the same layer (shown by the curved red arrows). Each layer of excitatory
pyramidal neurons is connected to a population of inhibitory neurons which implement competition between the
excitatory neurons in that layer. See the online article for the color version of this figure.
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Table 1
Parameters and those Values Used in the Models

Parameter names

Layer

1 2 3 4

Network parameters
Number of excit. neurons within each layer 64 � 64 64 � 64 64 � 64 64 � 64
Number of inhib. neurons within each layer 32 � 32 32 � 32 32 � 32 32 � 32
Number of FF afferent excit. connections per excit. neuron (EfE) 30 100 100 100
Fan-in radius for FF afferent excit. connections to each excit. neuron (EfE) 1.0 8.0 12.0 16.0
Number of FB afferent excit. connections per excit. neuron (EbE) {0, 10} {0, 10} {0, 10} —
Fan-in radius for FB afferent excit. connections to each excit. neuron (EbE) 8.0 8.0 8.0 —
Number of LAT afferent excit. connections per excit. neuron (ElE) {0, 10} {0, 10} {0, 10} {0, 10}
Fan-in radius for LAT afferent excit. connections to each excit. neuron (ElE) 4.0 4.0 4.0 4.0
Number of LAT afferent excit. connections per inhib. neuron (ElI) 30 30 30 30
Fan-in radius for LAT afferent excit. connections to each inhib. neuron (ElI) 1.0 1.0 1.0 1.0
Number of LAT afferent inhib. connections per excit. neuron (IlE) 30 30 30 30
Fan-in radius for LAT afferent inhib. connections to each excit. neuron (IlE) 8.0 8.0 8.0 8.0

Parameters for Gabor filtering of visual images
Phase shift (�) 0, �
Wavelength (�) 2
Orientation (�) 0, �/4, �/2, 3�/4
Spatial bandwidth (b) 1.5 octaves
Aspect ratio (	) .5

Cellular parameters
Excit. cell somatic capacitance (Cm

E) and inhib. cell somatic capacitance (Cm
I ) 500 pF, 214 pF a

Excit. cell somatic leakage conductance (g0
E) and inhib. cell somatic leakage

conductance (g0
I ) 25 nS, 18 nS a

Excit. cell membrane time constant (
m
E) and inhib. cell membrane time

constant (
m
I ) 20 ms, 12 ms a

Excit. cell resting potential (V0
E) and inhib. cell resting potential (V0

I) �74 mV, �82 mV a

Excit. firing threshold potential (�E) and inhib. firing threshold potential (�I) �53 mv, �53 mV a

Excit. after-spike hyperpolarization potential (VH
E) and inhib. after-spike

hyperpolarization potential (
R) �57 mV, �58 mV a

Absolute refractory period (
R) 2 ms a

Synaptic parameters
Synaptic neurotransmitter concentration (C) and Proportion of unblocked

N-Methyl-D-aspartic acid (NMDA) receptors (D) .5 b

Presynaptic STDP time constant (
C) and Postsynaptic STDP time constant
(
D) {5, 25, 125} ms b

Synaptic learning rate (�) .1 b

Range of synaptic conductance delay [.1, 10.0] ms b

Synaptic conductance scaling factor for FF excitatory connections from
Gabor filters to Layer 1 excit. cells (�GfE . �gGfE) [0, .4] nS c

Synaptic conductance scaling factor for FF excit. connections to excit. cells
in layers 2, 3 or 4 (�EfE . �gEfE) [0, 1.6] nS c

Synaptic conductance scaling factor for FB excit. connections to excit. cells
in layers 1, 2 or 3 (�EbE . �gEbE) [0, 1.6] nS c

Synaptic conductance scaling factor for LAT excit. connections to excit. cells
in layers 1, 2, 3 or 4 (�ElE . �gElE) [0, 1.6] nS c

Synaptic conductance scaling factor for LAT connections from excit. cells to
inhib. cells in layers 1, 2, 3 or 4 (�ElI . �gElI) 40 nS c

Synaptic conductance scaling factor for LAT connections from inhib. cells to
excit. cells in layers 1, 2, 3 or 4 (�IlE . �gIlE) 80 nS c

Excitatory reversal potential (V̂E) 0 mV a

Inhibitory reversal potential (V̂I) �70 mV a

Synaptic time constant for all FF, FB, and LAT connections from Gabor
filters and excit. cells to excit. cells (
GfE, 
EfE, 
EbE, 
ElE) 150 ms b

Synaptic time constant for LAT connections from excit. cells to inhib. cells
(
ElI) 2 ms a

Synaptic time constant for LAT connections from inhib. cells to excit. cells
(
IlE) 5 ms a

Parameters for numerical simulation by forward Euler time stepping scheme
Numerical step size (�t) .02 ms

Note. FF � feedforward; FB � feedback; LAT � lateral; STDP � spiketiming-dependent plasticity. Most integrate and fire parameters were taken from
Troyer et al. (1998; derived originally from McCormick et al., 1985), as indicated by the “a” symbol. Plasticity parameters (denoted by the “b” symbols)
are taken from Perrinet et al. (2001). Parameters marked with the asterisk (c) were tuned for the reported simulations.
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The cell membrane potential for a given Neuron Vi(t), indexed
by i, is driven up by current from excitatory conductance-based
synapses, and down toward the inhibitory reversal potential by
current from inhibitory conductance-based synapses. Neurons de-
cay back to their resting state over a time course determined by the
properties of its membrane. Here, 
m represents the membrane
time constant, defined as 
m � Cm/g0, where Cm is the memb-
rane capacitance, g0 is the membrane leakage conductance, and R
is the membrane resistance (R � 1/g0). V0 denotes the resting
potential of the cell. Class-specific values (excitatory and inhibi-
tory) are indexed by 	 for the neuron parameters. Ii(t) represents
the total current input from the afferent synapses (described in
Equation 3).

The total synaptic current injected into a neuron is given by the
sum of the conductances of all afferent synapses (excitatory and
inhibitory), multiplied by the difference between the synapse class
reversal potential, V̂	, and neuron membrane potential, Vi(t). Ex-
citatory and inhibitory synapses have positive and negative con-
ductances, respectively. The conductance of a given synapse is
given by gij where j and i are the indices of the pre- and postsyn-
aptic neurons, respectively:

Ii(t) � �
�

�
j

gij(t)(V̂
� � Vi(t)) (3)

Synaptic conductance equations. The synaptic conductance
of a particular synapse, gij(t), is governed by a decay term 
g and
a Dirac delta function (Equation 5) when spikes arrive from the
presynaptic neuron j as follows:

dgij(t)
dt � �

gij(t)
�g

� ��gij(t)�
l

	�t � �tij � tj
l� (4)

The conduction delay for a particular synapse is denoted by �tij,
which ranges from 0.1 to 10.0 ms, and each presynaptic neuron
spike is indexed by l. A biological scaling constant, �, has been
introduced to scale the synaptic efficacy, �gij, which lies between
unity and zero. The Dirac delta function is defined as follows:

	(x) � �
 if x � 0
0 otherwise

where, ��




	(x)dx � 1 (5)

Synaptic learning equations. The following differential equa-
tions describe the STDP occurring at each modifiable Excitatory -
Excitatory (E ¡ E) synapse. That is, these kinds of modifiable
synapses occur at all of the bottom-up, top-down, and lateral
connections from excitatory cells to excitatory cells throughout
Layers 1 to 4.

Here, i labels the postsynaptic neuron. The recent presynaptic
activity, Cij(t), is modeled by Equation 6, which may be interpreted
as the concentration of neurotransmitter (glutamate) released into
the synaptic cleft (Perrinet et al., 2001) and is bounded by [0, 1] for
0 � C � 1:

dCij(t)
dt � �

Cij(t)
�C

� �C(1 � Cij(t))�
l

	�t � �tij � tj
l� (6)

Cij(t) is governed by a decay term 
C and is driven up by
presynaptic spikes according to the model parameter C. The
inclusion of the axonal transmission delay �tij from presynaptic
neuron j to postsynaptic neuron i in Equation 6 means that the
variable Cij(t) is driven up at the time the spike from presynaptic

neuron j arrives at the postsynaptic neuron i, rather than the time
of emission of the spike from the presynaptic cell.

The recent postsynaptic activity, Di(t), is modeled by Equation
7 and may be interpreted as the proportion of NMDA receptors
unblocked by recent depolarization from back-propagated action
potentials (Perrinet et al., 2001):

dDi(t)
dt � �

Di(t)
�D

� �D(1 � Di(t))�
k

	�t � ti
k� (7)

Di(t) is governed by decay term 
D and is driven up by post-
synaptic spikes according to the model parameter D. Postsynaptic
neuron spikes are indexed by k. Unlike with the conduction of
action potentials toward the synapse, there is no conduction delay
associated with Di, because the cell body is assumed to be arbi-
trarily close to the receiving synapses and the effects of a post-
synaptic spike are assumed to have an equal impact on the neu-
ron’s own afferent synapses.

The strength of the synaptic weight, �gij(t), is modified accord-
ing to Equation 8, which is governed by the time course variable

�g

:

��g

d�gij(t)
dt � [(1 � �gij(t))Cij(t)�

k
	�t � ti

k�

��gij(t)Di(t)�
l

	�t � �tij � tj
l�]

(8)

Note that the postsynaptic spike train (indexed by k) is now
associated with the presynaptic state variable (C), and vice versa.
If C is high (because of recent presynaptic spikes having arrived at
the postsynaptic neuron) at the time of a postsynaptic spike, then
the synaptic weight is increased (LTP), whereas if D is high (from
recent postsynaptic spikes) at the time of a presynaptic spike
arriving at the postsynaptic neuron, then the weight is decreased
(LTD). As noted, the inclusion of the axonal transmission delay
�tij in Equation 6 means that the variable Cij(t) is driven up at the
time the spike from presynaptic neuron j actually arrives at the
postsynaptic neuron i. Consequently, this form of STDP learning
depends directly on the times that spikes from a presynaptic
neuron arrive at a postsynaptic neuron rather than the times that the
spikes were originally emitted by the presynaptic neuron.

The weight updates are also multiplicative, meaning that the
amount of potentiation decreases as the synapse strengthens, as has
been found experimentally (Bi & Poo, 1998). Theoretically, this
weight-dependent potentiation yields a normal distribution of syn-
aptic efficacies rather than pushing each weight to one extreme or
the other (van Rossum, Bi, & Turrigiano, 2000), as would be the
case with an additive form of STDP.

Numerical scheme. The differential equations described ear-
lier are converted to finite difference equations and simulated
using the forward Euler numerical scheme with a time step �t �
0.02 ms. In the finite difference equations, the Dirac delta function
has been replaced by the discrete approximation S(x), as defined in
(Amit & Brunel, 1997). Finally, in the original description, the
change in synaptic weight (Equation 8) was instantaneous, and so
�t/	�g

is defined to be a learning rate constant, �, in the corre-
sponding finite difference equation.

Training and stimuli. Before the visual images are presented
to the first excitatory layer (Layer 1), they are preprocessed by a
set of Gabor filters, which accord with the general tuning profiles
of simple cells in V1 (Cumming & Parker, 1999; Jones & Palmer,
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1987; Lades et al., 1993). The filters provide a unique pattern of
filter outputs for each transform of each visual object, which is
passed through to the first layer of the network. These filters are
known to provide a good fit to the firing properties of V1 simple
cells, which respond to local oriented bars and edges within the
visual field (Cumming & Parker, 1999; Jones & Palmer, 1987).
The input filters used are computed by the following equations:

g(x, y, �, �, �, b, �) � exp��x�2 � �2y�2

2�2 �cos�2�x�
�

� ��
(9)

with the following definitions:

x� � x cos � � y sin �

y� � �x sin � � y cos �

� � �(2b � 1)
�(2b � 1)	ln2

2

(10)

where x and y specify the position of a light impulse in the visual
field (Petkov & Kruizinga, 1997). The parameter � is the wave-
length (1/� is the spatial frequency), � controls number of such
periods inside the Gaussian window based on � and spatial band-
width b, � defines the orientation of the feature, � defines the
phase, and 	 sets the aspect ratio that determines the shape of the
receptive field. In the experiments in this article, an array of Gabor
filters is generated at each of 128 � 128 retinal locations with the
parameters given in Table 1.

The outputs of the Gabor filters are used as the basis to generate
Poisson spike trains as follows:

P{input cell(x, y, f) spikes at t}

� g(x, y, f) · max _ rate _ scaling _ factor · �t (11)

where f is the index of a filter used for the simulation and
max_rate_scaling_factor is the maximum input neuron firing rate
(set to 100 in the current simulation studies). The outputs of the
Gabor filters coded in Poisson spike trains are enacted by the
Layer 0 (Gabor Filter) cells which propagate activity to the Layer
1 excitatory neurons of the network according to the synaptic
connectivity given in Table 1. That is, each Layer 1 neuron
receives connections from 30 randomly chosen Gabor filters lo-
calized within a topologically corresponding region of the retina.
These distributions are defined by a radius shown in Table 1.

Performance Measures

Information analysis of average firing rate responses of single cells.
Information theory is used to quantify how selective the average
firing rate responses of individual neurons are for members of a
particular stimulus category. If a neuron responds invariantly to the
members of a particular stimulus category but not to members of
other stimulus categories, then the neuron carries a maximum
amount of information about the presence of its preferred stimulus
category.

We apply information theory to the average firing rate responses
of individual neurons in the network in order to be able to compare
the information conveyed by the firing rates of neurons with the
information conveyed by the temporal spike patterns emitted by
PGs (described later in Information Analysis of Temporal Spike
Patterns Emitted by Polychronous Groups). In this way, we are

able to demonstrate the very large increase in representational
capacity that is possible using the temporal spike time coding
available with the emergence of polychronization.

We have previously used information theory to quantify the
performance of single neurons tasked with learning a translation
invariant response (across multiple retinal locations) to specific
visual stimuli (Eguchi, Mender, Evans, Humphreys, & Stringer,
2015). If the responses r of a neuron carry a high level of infor-
mation about the presence of a particular stimulus s across differ-
ent retinal locations, then this implies that the neuron will respond
selectively to the presence of that stimulus regardless of where the
stimulus is presented on the retina.

In this study, we do not explicitly introduce transforms of the
visual inputs such as translation or rotation. However, because the
input neural spike trains are generated based on Poisson distribu-
tions, there is a significant degree of stochasticity involved. This
means that the exact timings of the input neuron spikes are differ-
ent at each run. Therefore, in the current simulation study, different
presentations of the same visual input to the network are consid-
ered as the “transforms” of the same stimulus category.

The amount of stimulus specific information that a specific cell
carries is calculated using the following formula, with details given
by Rolls and Milward (2000):

I(s, �R) � �
r�R¡

P(r |s)log2
P(r |s)
P(r) (12)

Here, s is a particular stimulus, r is the response of a cell to a single
stimulus, and �R is the set of responses of a cell to the set of stimuli.

The maximum information that an ideally developed cell could
carry is given by the following formula:

Maximum cell information � log2(n) bits, (13)

where n is a number of different stimulus categories.
Information analysis of temporal spike patterns emitted by

polychronous groups. We also apply information theory to
quantify the amount of information conveyed by the temporal
patterns of spikes emitted by PGs. Spike train data consists of
time-ordered sequences of spikes. It has been proposed that, in the
brain, the temporal spike patterns emitted by PGs may be utilized
to encode larger amounts of information than codes relying solely
on the average firing rates of neurons.

However, to simplify the analysis, in the simulations, we applied
information theory to the analysis of PGs containing only two
spikes emitted by a pair of neurons. In the simplest scenario
involving only two neurons, A and B, with interspike delay k, the
PG episode can be represented using the notation A[k]B (Diekman,
Dasgupta, Nair, & Unnikrishnan, 2014). By applying the analytical
technique described in this section to the simulations reported
later, we are able to demonstrate the emergence of frequently
repeating PG episodes of the form A[k]B that are specific to a
specific stimulus category. A number of these two-neuron inter-
actions could in principle chain together to form longer, more
complex multineuron PGs.

The same information analysis technique described earlier is
applied to frequently occurring spike-pair PGs of the form A[k]B to
investigate whether the network is able to represent different visual
stimulus categories using this form of temporal coding. Based on
the spike trains recorded during many stimulus presentations to the
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network, we compute the probabilities that a given spike-pair
A[k]B will occur in response to the presentation of each of the
stimulus categories s. These probabilities are based on the fre-
quency of occurrence of the spike-pair A[k]B across multiple
transforms of each stimulus s, that is, across multiple presentations
(transforms) of the each stimulus with different stochastic (Pois-
son) input representations. From these frequency distributions, we
construct the following probability table for each stimulus cate-
gory s:

ProbTable (i, j, d) �P{(Presynaptic cell j spikes at time t � d) |
(Postsynaptic cell i spikes at time t)} (14)

where i and j are the indices of two neurons under consideration,
t is the time at which the cell i emits a spike, and d is the time
interval that neuron i emits a spike after neuron j. We consider
values of d within the range of [0, 10 ms], in which this time
interval is divided into 10 equal bins of 1 ms. It is important to note
that the probability table is constructed purely based on the actual
spike trains emitted by neurons and does not take into account the
actual synaptic connectivity between the neurons. This means that
this technique highlights the correlations in spike times emitted by
the cells involved but does not necessarily reflect actual synaptic
connections. Given this method of analysis, there are potentially
167,772,160 (nCells � nCells � maxDelay) distinct spike-pair PG
representations the output neuronal layer can hold. This is 40,960
(nCells � maxDelay) times more than the case of a localist rate-
coded neuronal representation.

In applying the information analysis methodology to analyzing the
information carried by spike-pair PGs, we regard the probability table
given by Equation 14 as �R, the set of responses to the set of
stimuli, used in Equation 12. Thus, Equation 12 may now be
used to compute the information carried by spike-pair PGs about
the presence of particular stimulus categories s. With this tech-
nique, we can quantify how selective such temporal spike-pair PGs
are for members of a particular stimulus category. In other words,
if a particular spike-pair PG responds invariantly to the members
of a particular stimulus category s but not to the members of other
stimulus categories, then the spike-pair PG would carry maximum
information about the presence of its preferred stimulus category.

Polychronous group counting. A key diagnostic in the sim-
ulations reported later is to identify and count the PGs that have
emerged in the network after visually guided training.

As discussed in the introduction of this article, a PG is defined
as the set of neurons that support the associated time-locked spike
pattern. More formally, Martinez and Paugam-Moisy (2009) de-
fined that

an s-triggered polychronous group refers to the set of neurons that can
be activated by a chain reaction whenever the triggers Nk (1 � k � s)
fire according to the timing pattern tk (1 � k � s). The PG is denoted
by N1 – N2 – . . . – Ns (t1, . . . , ts), where the firing times tk are listed
in the same order as the corresponding triggers Nk. (Martinez &
Paugam-Moisy, 2009, p. 26)

We adopted the algorithm used by Izhikevich (2006) and mod-
ified it to be applicable for our conductance based LIF neural
network model. The basic algorithm is as follows: (a) identify a set
of potential triggers consisting of s neurons with specific spike
timings (e.g., N1 – N2 – . . . – Ns [t1, . . . , ts]), and (b) find PGs by

simulating the propagation of activity from activation of this set of
triggers.

More specifically, the algorithm first finds all combinations of a
given number of s neurons (in our case, s � 3) that have at least
one postsynaptic cell in common. For each such tuple of neurons,
it then looks for the relative spike timings, based on synaptic delay,
that can excite the common postsynaptic neuron maximally and
enough for it fire. If such neurons exist, then the tuple becomes a
trigger set. The algorithm then simulates the firing of the triggers
with the identified spike timings and records the propagation of
neural activity through the network until it decays to zero. In order
to truncate the possible cyclic PGs, an upper limit is set for the
time span of a PG and the number of neurons recorded.

Simulations

In the current simulation study, the network was trained and
tested on the abstract visual objects shown in Figure 4. The shapes
are a circle, a heart, and a star, which are colored black and
presented against a 128 � 128 light gray background. Each sim-
ulation begins with an initial period of visual training. During each
training epoch, each of the three object shapes was presented for
2 s to the network. As explained in the model description, the
images are convolved with Gabor filters (Equation 9) that mimic
the responses of edge detecting V1 simple cells. The stochastically
generated Poisson spikes (Equation 11) are then imposed upon
Layer 0 and are then propagated to the first layer (Layer 1) of the
network, and thence up through successive Layers 2 to 4. During
this, the synaptic connections from the Gabor filters to Layer 1
excitatory neurons, as well as the bottom-up, top-down, and lateral
connections between excitatory neurons across all four layers of
the network, were modified using the STDP rule described in
Equation 8. In order to test the behavior of the network before and
after 10 epochs of training, the same set of visual stimuli were also
presented to the input layer with STDP turned off before and after
training, and the resulting spike trains of neurons in the output
layer were recorded for analysis.

Effect of Varying Synaptic Connectivity Within Network

In this section, we explore the performance of the model with
different kinds of synaptic connectivity present within the network
architecture. Specifically, we simulate the model with the follow-
ing four different network connectivities: (1) feedforward (FF)
connections only, (2) FF � Feedback (FB) connections, (3) FF �
Lateral (LAT) connections, and (4) FF � FB � LAT connections.
Our aim is to assess the contributions that each of these different
types of synaptic connection make toward the operation of the
model, including especially the relative amounts of stimulus in-
formation carried either in the firing rates of individual neurons or
by the spike-pair PGs that emerge after training.

Single-cell information analysis was first conducted on the
average firing rate responses of individual neurons in the output
layer to the three visual stimuli shown in Figure 4 before and after
training. The aim was to measure how much stimulus information
was carried by the output neurons under the assumption of tradi-
tional rate coding. In this analysis, there are three different stim-
ulus categories (n � 3). The maximum amount of information for
a single neuron is log2(n), where n is the number of stimulus
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categories � 3. Therefore, the maximum amount of information
that a neuron can carry about a particular stimulus is log2(3) �
1.58 bits. Each visual stimulus was presented twice during testing,
each time for a duration of 2 s. Because the precise spike timings
of the input vary for the same visual stimulus between trials
because of the stochastic nature of Poisson spike generation, this is
conceptually equivalent to presenting two transforms of each stim-
ulus category. Individual Layer 4 neurons would have to respond
invariantly over the two transforms of a single stimulus category,
and not to transforms of the other stimulus categories, in order to
carry maximum information about a single stimulus category.

Figure 7a shows the information analysis results for the Layer 4
neuron responses, based on the average firing rates over 2 s of
presentation of each visual stimulus. Results before training are
shown for the full network architecture with FF � FB � LAT
synaptic connections (gray line). Very few output neurons carry
the maximal information before training. Results after training are
presented for the following four different network connectivities:
(1) FF connections only (black dotted line), (2) FF � FB connec-
tions (black dash-dot line), (3) FF � LAT connections (black
dashed line), and (4) FF � FB � LAT connections (black solid
line). For all four different types of network connectivity, around
50 to 100 cells learned to carry the maximum single cell informa-

tion (FF � 59, FF � FB � 69, FF � LAT � 85, and FF � FB �
LAT � 51). Given that the output layer contains a total of 4,096
neurons, in each simulation, only a relatively small fraction of
these neurons learned to carry maximal information about stimulus
identity in their average firing rates. Moreover, it is noticeable that
the network incorporating all three kinds of connections gave the
lowest performance.

We next applied the new technique introduced in this article,
spike-pair PG information analysis, which is instead based on
frequently occurring temporal spike-pairs as described in Infor-
mation Analysis of Temporal Spike Patterns Emitted by Poly-
chronous Groups. Figure 7b shows the information analysis
results for spike-pair PG responses. Results before training are
shown for the full network architecture with FF � FB � LAT
synaptic connections (gray line). Before training, very few
spike-pair PGs carry the maximal information of 1.58 bits. The
four different black lines show the results after training for the
four different network connectivities: (1) FF connections, (2)
FF � FB connections, (3) FF � LAT connections, and (4) FF �
FB � LAT connections. All four network architectures pro-
duced large numbers of spike-pair PGs that carried the maximal
amount of information about stimulus identity (FF � 66, FF �
FB � 244, FF � LAT � 469, and FF � FB � LAT: 973).

Figure 7. (a) Single-cell average firing rate-based information analysis: We computed the information carried
by the output (fourth layer) neurons about a specific object shape. The plot shows the maximum single-cell
information carried by 300 cells in Layer 4, where the cells are plotted along the abscissa in rank order. The
results before training for the full network architecture with feedforward (FF) � feedback (FB) � lateral (LAT)
synaptic connections are plotted in gray. It can be seen that before training, very few output neurons carry the
maximal information of 1.58 bits. The four different black lines show the results after training for four different
network connectivities: (1) FF connections only, (2) FF � FB connections, (3) FF � LAT connections, and (4)
FF � FB � LAT connections. It is evident that all four types of network architecture have produced around 50
to 100 output neurons with maximal single-cell information. (b) Spike-pair polychronous group (PG) informa-
tion analysis: We computed the information carried by frequently occurring temporal spike-pair PGs in the
output (fourth layer) neurons about visual object shape. The plot shows the maximum information carried by
spike-pair PGs in Layer 4, where the spike-pair PGs are plotted along the abscissa in rank order. The results
before training for the full network architecture with FF � FB � LAT synaptic connections are plotted in gray.
It can be seen that before training, very few spike-pair PGs carry the maximal information of 1.58 bits. The four
different black lines show the results after training for four different network connectivities: (1) FF connections,
(2) FF � FB connections, (3) FF � LAT connections, and (4) FF � FB � LAT connections. It is evident that
the full network architecture with FF � FB � LAT connections has produced the most spike-pair PGs with
maximal information. Indeed, with the full network architecture, almost 1,000 spike-pair PGs have reached the
maximum information of 1.58 bits.
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Importantly, it can be seen that the full network architecture
with FF � FB � LAT connections produced the most spike-pair
PGs with maximal information. Indeed, with the full network
architecture almost 1,000 spike-pair PGs reached the maximum
information of 1.58 bits. In particular, the number of spike-pair PGs
with maximal information in the full network architecture is far
greater (about 10 times) than the number of single output neurons
achieving maximal information using a firing rate coding shown in
Figure 7a.

Thus, the full network developed many spike-pair PGs during
visually guided learning that were tuned to specific stimuli. In
particular, a major novel result of the current work is that this
self-organization of stimulus-specific spike-pair PGs occurred
even when the stimulus input representations were randomized
Poisson spike trains, in which the temporal ordering of spikes
varied stochastically across different presentations of the same
visual stimulus. The development of (spike-pair) PGs using STDP
during visual training in such a spiking network is thus a highly
robust process that operates perfectly well with randomized stim-
ulus spike patterns in the lower stages of processing. Furthermore,
the information results shown in Figure 7 clearly illustrate the
greater potential of temporal coding over traditional rate coding in
terms of representational capacity within a biologically realistic
spiking neural network with bottom-up, top-down, and lateral
connections.

Effects of Varying Key Model Parameters

We next investigate the effects of varying key model parameters
in order to identify which factors are important to the emergence
of temporal coding by PGs. In particular, we explore the effect of
varying the STDP time constant and the number of synaptic
contacts between each pair of pre- and postsynaptic neurons on the
information carried by spike-pair PGs in the output layer. This part
of the investigation uses a full model with all three kinds of
synaptic connectivity (FF � FB � LAT).

Figure 8a shows the spike-pair PG information carried by fre-
quently occurring temporal spike-pairs in the output layer with the
STDP time constants 
C and 
D both set to either 5 ms (solid line), 25
ms (dashed line), or 125 ms (dotted line). The results show that
shortening the STDP time constants promotes the emergence of
spike-pair PGs with maximal information about which stimulus is
presented to the network. In particular, the network develops the
largest number of such stimulus specific spike-pair PGs when
the STDP time constants are shortest (i.e., 5 ms). However, as the
STDP time constant increases, the number of object specific spike-
pair PGs decreases. Increasing the STDP time constant makes the
precise timing of the spikes less important for learning, making the
effect of learning more similar to that expected from traditional
Hebbian learning in a rate-coded model. This result implies an
important role of temporally precise STDP for the development of
temporal coding.

Figure 8. Spike-pair polychronous group (PG) information analysis: We computed the information carried by
frequently occurring temporal spike-pair PGs in the output layer of a trained network about visual object shape.
The two subplots show the maximum information carried by spike-pair PGs in Layer 4, where the spike-pair PGs
are plotted along the abscissa in rank order. (a) Spike-pair PG information scores for three values of the
spike-timing-dependent plasticity (STDP) time constants 
C � 
D � 125 ms, 25 ms, or 5 ms. It is evident that
shortening the STDP time constants promotes the emergence of spike-pair PGs with maximal information about
which stimulus is presented to the network. In particular, the network develops the largest number of such
stimulus-specific spike-pair PGs when the STDP time constants are shortest (i.e., 5 ms). As the STDP time
constants are lengthened, this reduces the temporal precision of the STDP and so degrades the emergence of PGs.
(b) Spike-pair PG information scores for the cases in which the number of plastic synaptic contacts between each
pair of pre- and postsynaptic excitatory neurons is either one or two. It can be seen that there is a large increase
in the number of spike-pair PGs with maximal stimulus information when there are two synaptic contacts with
different transmission delays, rather than just one contact, between each pair of pre- and postsynaptic excitatory
neurons. The presence of two synaptic contacts between each pair of pre- and postsynaptic excitatory neurons
enables the STDP to select which of the transmission delays to strengthen in order to promote the development
of PGs.
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Figure 8b compares the information carried by frequently oc-
curring temporal spike-pair PGs in the output layer when the
number of plastic synaptic contacts between each pair of pre- and
postsynaptic excitatory neurons is either one or two. In the latter
case, the two synaptic contacts between each pair of pre- and
postsynaptic excitatory neurons had different durations that were
randomly assigned at the beginning of the simulation and remained
fixed throughout. Only the strengths of these connections could be
modified by STDP during visually guided learning. The results
show that having multiple synaptic contacts, and hence multiple
axonal transmission delays, between each pair of excitatory neu-
rons, increases the number of spike-pair PGs with maximum
information. The presence of two synaptic contacts between each
pair of pre- and postsynaptic excitatory neurons enables the STDP
to select which of the transmission delays to strengthen in order to
promote the development of (stimulus specific) PGs as hypothe-
sized.

The results shown in Figure 8b demonstrate how such a spiking
model may exploit the ability to effectively select (self-organize)
the durations of the axonal delays in the plastic connections
between excitatory neurons. If there is no self-organization during
visual learning over synaptic delay lengths, then it is effectively
prespecified by the initial random distribution of axonal transmis-
sion delays within the network whether a given neuron can be a
part of a particular PG. By allowing multiple plastic synaptic
contacts, with different delays, between each pair of pre- and
postsynaptic excitatory neurons, we expected that STDP would
effectively select which of these axonal delays to strengthen.

We next took a deeper look into the selective strengthening and
weakening of synaptic contacts with different axonal transmission
delays between each pair of pre- and postsynaptic excitatory
neurons. This analysis was carried out on the same simulation with
two synaptic contacts with different fixed delays between each pair
of neurons. In this case, STDP could select one of the delays to be
strengthened while weakening the other during visual training. For
each pair of connected pre- and postsynaptic neurons, we calcu-
lated the absolute difference between the synaptic weights of the
two synaptic contacts both before and after training. The absolute
difference in the values of the two synaptic weights after training
should reflect how effectively the STDP has selectively strength-
ened one connection with a particular delay but weakened the
other connection with a different delay, which is necessary to
promote the emergence of many stimulus specific spike-pair PGs.
Specifically, before and after training, we computed frequency
histograms in which pairs of pre- and postsynaptic excitatory
neurons were binned according to the absolute difference between
the weights of their two synaptic contacts.

Figure 9a shows the result of dividing the frequency histogram
after training by the frequency histogram before training on a bin
by bin basis. Thus, the subplot marked “a” shows the factor by
which the number of pairs of neurons with a particular absolute
difference between the weights of their two synaptic contacts
changes after training. It can be seen that after training, there was
a large increase in the number of pairs of pre- and postsynaptic
excitatory neurons with the maximum possible synaptic weight
difference. This implies that during visual training, one of the
synaptic weights went to its maximum value of 1.0, whereas the
other synaptic weight went to the minimum value of 0.0. This
represents successful synaptic delay selection by STDP.

Figure 9b shows examples of synaptic modifications for four
pairs of pre- and postsynaptic excitatory neurons, where each such
pair of neurons has two synaptic contacts with different transmis-
sion delays. For each pair of neurons, these plots show selective
strengthening of one synaptic contact with a particular delay but
weakening of the other synaptic contact with a different delay.
These results clearly demonstrate that STDP is able to selectively
strengthen and weaken synaptic connections during visual learning
according to their respective transmission delays. The model thus
selects and self-organizes its effective synaptic delays, which can
greatly facilitate the emergence of stimulus specific (spike-pair)
PGs.

The Emergence of Larger Scale Polychronous Groups

In this section, we explored the development of larger scale PGs
(i.e., containing more than just two neurons). In particular, we inves-
tigated how the development of these PGs is influenced by changing
the kind of synaptic connectivity implemented within the network.
For each simulation with a different connectivity structure (FF only,
FF � FB, FF � LAT, and FF � FB � LAT), we identified all the
potential PGs triggered from cells in the third layer of the network
based on the synaptic connectivity, conduction delays, and synaptic
weights as explained in Polychronous Group Counting. Furthermore,
based on the actual spike trains recorded during testing, we investi-
gated whether any of the activated PGs had learned to be stimulus
specific.

Table 2 shows the statistics of the PGs that emerged in network
models with different kinds of synaptic connectivity after training.
The top row shows the total number of PGs that were identified. The
general trend is that as the synaptic connectivity becomes more
complex, that is, with more types of connection, the number of PGs
increases. In particular, by far the largest number of PGs was found in
the full network architecture with FF � FB � LAT connections. The
middle row of Table 2 shows the mean number of spikes in each PG.
Lastly, the bottom row presents the mean longest path length of each
PG, where the longest path is defined as the number of neurons
involved in the longest chain of spikes emitted by the PG because of
the activation of the trigger neurons (Izhikevich, 2006). It can be seen
that we get an increase in both of these statistics as the network
architecture includes more types of synaptic connection. Indeed, the
full network architecture (FF � FB � LAT) also gives rise to the
largest mean number of spikes in each PG and the mean longest path
length of each PG. The full network architecture is clearly the most
efficacious for promoting the emergence of polychronization.

The detailed statistical distributions underlying the mean values
shown in the second and third rows of Table 2 are shown as box plots
in Figure 10. Figure 10a shows the distribution of the average number
of spikes in a PG, whereas Figure 10b presents the distribution of the
longest path of spikes in a PG. For both subplots, the red horizontal
lines indicate the medians, and the red circles indicate the means. As
already shown in Table 2, the full trained network architecture (FF �
FB � LAT) gives rise to the largest mean number of spikes in each
PG and mean longest path length of each PG compared with the three
other reduced network connectivities. The results from the four
trained networks are compared with those from the untrained full
network architecture (FF � FB � LAT) shown on the right of each
subplot. By comparing the results for the full network architecture
before and after training, it can be seen that training has led to a
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significant increase in the mean number of spikes in each PG and the
mean longest path length of each PG.

We next investigated whether the PGs that developed after training
in the full network architecture (with all three connectivity types FF �
FB � LAT) had learned to respond to a particular stimulus category.
This was done by analyzing the responses of the actual trigger events
for these PGs in Layer 3 to the three visual stimuli: the circle, heart,
and star. The stimulus-selective PG trigger events were identified as
being selective for one of the stimuli by using information analysis.
This was done using a similar information analysis to that used for

single cells, but instead using the occurrences of the PG trigger events
in the spike trains of Layer 3 neurons.

Figure 11 plots the occurrences of the stimulus-selective PG
trigger events (identified by the information analysis) when the
network was tested on the three visual stimuli: the circle, heart, and
star. The figure shows the occurrences of these PG trigger events
when each of the stimuli is presented twice to the network, each
time for 2 s. Specifically, the circle is presented twice, followed by
two presentations of the heart and then two presentations of the
star. It can be seen that PG Trigger Events 1 to 70 respond

Figure 9. Simulation results demonstrating selection of effective synaptic delays by spike-timing-dependent
plasticity (STDP) during visual training. In this simulation, the model has two synaptic contacts with different
fixed delays between each pair of pre- and postsynaptic excitatory neurons. STDP can then select one of the
delays to be strengthened while weakening the other during visual training. For each pair of connected pre- and
postsynaptic excitatory neurons we calculated, both before training and after training, the absolute difference
between the synaptic weights of their two synaptic contacts. We then computed two frequency histograms,
corresponding to before and after training, in which all such pairs of pre- and postsynaptic excitatory neurons
were binned according to the absolute difference between the weights of their two synaptic contacts. These two
frequency histograms were then used to compute the plot shown in 9a, which shows the result of dividing the
frequency histogram after training by the frequency histogram before training on a bin by bin basis. Thus, the
subplot marked “a” shows the factor by which the number of pairs of neurons with a particular absolute
difference between the weights of their two synaptic contacts changes after training. It can be seen that after
training there was a large increase in the number of pairs of pre- and postsynaptic excitatory neurons with the
maximum possible synaptic weight difference. This implies that during visual training, one of the synaptic
weights went to its maximum value of 1.0, whereas the other synaptic weight went to the minimum value of zero.
This represents successful synaptic delay selection by STDP. (b) Shows four examples of the changes in the
weights of the two synaptic contacts between a pair of pre- and postsynaptic excitatory neurons that occurred
during training. The solid and dashed lines in each subplot represent the strengths of the two synaptic contacts
between a pre- and postsynaptic neuron, each with a different synaptic delay. For each pair of neurons, these
plots show selective strengthening of one synaptic contact with a particular delay but weakening of the other
synaptic contact with a different delay. Again, it is clearly evident that STDP is able to selectively strengthen
and weaken synaptic connections during visual learning according to their respective transmission delays.

Table 2
Statistics of the PGs That Emerged in Network Models With Different Kinds of Synaptic Connectivity After Training

Synaptic connectivity

Parameters FF FF � FB FF � LAT FF � FB � LAT

Number of PGs 562 1,689 827 32,317

M SD M SD M SD M SD

Total number of spikes in PG 8.91 6.16 8.94 7.30 8.70 5.98 11.41 6.56
Longest path of spikes in PG 1.00 .00 1.12 .44 1.31 .53 2.55 .97

Note. FF � feed-forward; FB � feedback; LAT � lateral; PG � polychronous group.
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selectively to the circle, PG Trigger Events 71 to 102 respond to
the heart, and PG Trigger Events 103 to 123 respond to the star.

These results confirm that in the trained full network architec-
ture (FF � FB � LAT), large numbers (i.e., greater than 100) of
PGs respond selectively to just one of the stimuli, and do so across
different presentations of that stimulus.

The Emergence of Binding Neurons

Finally, we analyzed the PGs from the full network model
(FF � FB � LAT) that were found to respond to specific stimuli
in The Emergence of Larger Scale Polychronous Groups for the
presence of the hypothesized binding neurons as illustrated in
Figure 3a. Figure 12 shows examples of activated PGs, binding
neurons, and visual features represented by input Gabor filters that
drive the cells in the PGs. Simulation results are presented from the
trained full network architecture when tested on the three visual
stimuli: the circle, heart, and star. Each row (a-c) represents a PG
of neurons that responds selectively to one of the stimuli (subplot
in left pane) and the visual features represented by the input Gabor
filters with strong connections to particular neurons explicitly
identified in the PGs (two subplots in right pane). The PGs shown
in the rows marked “a,” “b,” and “c” respond selectively to the
circle, heart, and star, respectively.

In the PG plots shown on the left of Figure 12, the neurons are
identified by small circles and the strengthened connections be-

tween the neurons are represented by lines. In particular, the rows
marked “a” and “c” present clear examples of the hypothesized
binding neurons. In these PG plots, the three neurons that make up
the three-neuron binding circuit (as illustrated in Figure 3a) have
bold connections between them. For example, in row “a,” there are
three neurons in the binding circuit as follows: Neuron 12,686 (a
PG trigger neuron in Layer 3) represents the low-level feature,
Neuron 18,657 (a Layer 4 output neuron) represents the high-level
feature, and Neuron 18,396 is the related binding neuron between
these two features. It can be seen that the low-level Feature Neuron
12,686 sends a connection to the high-level Feature Neuron
18,657, and both Feature Neurons 12,686 and 18,657 send con-
nections to the Binding Neuron 18,396. In particular, it can be
seen from the axonal transmission delays shown in the plot that
if the low-level Feature Neuron 12,686 is driving the high-level
Feature Neuron 18,657, then the spikes emitted by both of these
feature neurons will arrive at the Binding Neuron 18,396 at
about the same time and so reinforce each other. Thus, the
Binding Neuron 18,396 will fire if the low-level Feature Neuron
12,686 is actually driving the high-level Feature Neuron 18,657. A
similar binding relationship between three neurons is shown in row
“c.” Row “b” shows that mixtures of polychronous representation
types emerge in the same neuronal layers.

The two subplots presented in the right panes of rows (a-c) in
Figure 12 show the visual features represented by the input Gabor

Figure 10. Box plots showing key performance statistics of the polychronous groups (PGs) that emerged in
network models with different kinds of synaptic connectivity (FF only, FF � FB, FF � LAT, and FF � FB �
LAT) after training. The subplot marked “a” shows the distribution of the average number of spikes in a PG,
whereas “b” presents the distribution of the longest path of spikes in a PG. For both subplots, the red horizontal
lines indicate the median, and the red circles indicate the means. It is evident that the full trained network
architecture (feedforward [FF] � feedback [FB] � lateral [LAT]) gives rise to the largest mean number of spikes
in each PG and mean longest path length of each PG compared with the three other reduced network
connectivities. The results from the four trained networks are compared with those from the untrained full
network architecture (FF � FB � LAT) shown on the right of each subplot. By comparing the results for the
full network architecture before and after training, it can be seen that training has led to a significant increase
in the mean number of spikes in each PG and the mean longest path length of each PG. See the online article
for the color version of this figure.
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filters that have strong feedforward connections to two neurons from
the PG shown in the left pane. Specifically, the right pane shows a
Layer 3 trigger neuron for the PG (left), and a Layer 4 neuron from
within the same PG (right). To produce these subplots, the feedfor-
ward synaptic connections between successive layers are traced back
to the input Gabor filters in order to determine the specific visual
features that drive the responses of the higher layer neurons. Starting
from a particular neuron in Layer 3 or 4, we select the connections
from the previous layer that have the highest weights, repeating this
process through successive layers until the connections reach the
Gabor filters in the input layer. This then allows us to plot the pattern
of Gabor input filters that the neuron in Layer 3 or 4 has become tuned
to. Looking at the right panes of Figure 12 (a and c), it is clear that the
Layer 3 neurons (left) represent simpler low-level features, whereas
the Layer 4 neurons (right) represent more global features of the entire
object. For example, in row “a” of Figure 12, it can be seen that the
low-level Feature Neuron 12,686 in Layer 3 (left) receives strong
connections from a simpler set of input Gabor filters than the high-
level Feature Neuron 18,657 in Layer 4 (right). Moreover, compari-
son with the corresponding PG plots in the left panes of Figure 12 (a
and c) shows that the layer four neurons are being driven by the
simpler Layer 3 neurons, with the outputs of both Layer 3 and 4
neurons driving an associated binding neuron. These results are con-
sistent with our underlying theoretical framework about binding tak-
ing place between low-level and high-level visual features.

Feedforward Projection of Information About Low-Level
Visual Features to Higher Neuronal Layers

Simulations of the full spiking network architecture (FF � FB �
LAT) provided examples of the kind of feedforward propagation of

visual information hypothesized in Feedforward projection of infor-
mation about low-level visual features to higher neuronal layers and
illustrated in Figure 5a. The binding neurons presented in the rows
marked “a” and “c” of Figure 12 were in fact in Layer 4. Thus, in each
of these examples, the low-level feature neuron was in Layer 3, the
high-level feature neuron was in Layer 4, and the binding neuron was
also in Layer 4. In these cases, information about the low-level feature
represented in Layer 3, including its local image context (i.e., that the
low-level feature represented in Layer 3 is part of the high-level
feature represented in Layer 4), is projected onto the binding neuron
in Layer 4. These simulation results confirm the feasibility of the
hypothesis that low-level visual information is propagated forward
(i.e., bottom-up) to higher layers in the manner proposed earlier. This
could allow information about low-level features to be represented in
the highest layers of the network, where, in principle, this information
could be read out by subsequent behavioral systems.

Discussion

In this article, we explored the operation of a biologically
detailed neural network model of the primate ventral visual sys-
tem. The model incorporates the following key aspects of cortical
dynamics and architecture: (a) the model implements spiking
neural dynamics in which the timings of action potentials or
“spikes” are simulated explicitly; (b) STDP is used to modify the
synaptic connections during visually guided learning; (c) the net-
work architecture incorporates bottom-up, top-down, and lateral
synaptic connections; (d) the synaptic connectivity between neu-
rons incorporates distributions of axonal conduction delays of
varying durations; and (e) in some simulations multiple synaptic
connections with different axonal transmission delays are incor-

Figure 11. Graphical representation of the occurrences of stimulus-selective polychronous group (PG) trigger
events in Layer 3 of the trained full network architecture (feedforward [FF] � feedback [FB] � lateral [LAT])
when tested on the three visual stimuli: the circle, heart, and star. The stimulus-selective PG trigger events were
first identified as being selective for one of the stimuli by using information analysis. In the figure, we show the
occurrences of these PG trigger events when each of the stimuli is presented twice to the network, each time for
2 s. Specifically, the circle is presented during 0 to 2 s, and then again during 2 to 4 s. Next, the heart is presented
during 4 to 6 s, and then again during 6 to 8 s. Finally, the star is presented during 8 to 10 s, and then again during
10 to 12 s. The distinct stimulus-selective PG trigger events identified by the information analysis are numbered
along the ordinate. It can be seen that PG Trigger Events 1 to 70 responded selectively to the circle, PG Trigger
Events 71 to 102 responded to the heart, and PG Trigger Events 103 to 123 responded to the star. See the online
article for the color version of this figure.
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Figure 12. Examples of activated polychronous groups (PGs), binding neurons, and visual features represented
by input Gabor filters that drive the cells in the PGs. Simulation results are presented from the trained full
network architecture (feedforward [FF] � feedback [FB] � lateral [LAT]) when tested on the three visual
stimuli: the circle, heart, and star. The left side of the figure presents three examples of the PGs identified using
the technique explained in Polychronous Group Counting. In our model, the cell index is assigned as follows:
Cells with index 1 to 4,096 (64 � 64) are the excitatory cells in the first layer; 4,096 � 1 to 4,096 � 1,024 (32 �
32) are the inhibitory cells in the first layer; 5,120 � 1 to 5,120 � 4,096 are the excitatory cells in the second
layer; 9,216 � 1 to 9,216 � 1024 are the inhibitory cells in the second layer; and so on. To help identify the
different kinds of cells in the plots, the dotted horizontal lines mark the boundary between the excitatory and
inhibitory neurons within a layer, whereas the solid horizontal lines indicate the separation between the
inhibitory neurons in one layer and the excitatory neurons in the next higher layer. Each row (a-c) represents a
PG of neurons that responds selectively to one of the stimuli (subplot in left pane) and the visual features
represented by the input Gabor filters with strong connections to particular neurons explicitly identified in the
PGs (two subplots in right pane). In the PG plots (shown on the left), the neurons are identified by small circles
and the strengthened connections between the neurons are represented by lines. The neurons are plotted along
the abscissa according to the relative timings of their spikes within the PGs, which was determined by the axonal
transmission delays of the strengthened connections between the neurons. In particular, rows “a” and “c” present
clear examples of the hypothesized binding neurons.
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porated between each pair of pre- and postsynaptic neurons. These
are basic, known aspects of the architecture and function of the
visual cortex. Using this model architecture, we explored a number
of major computational hypotheses as follows.

Emergence of Polychronization

Previous authors have considered the potential role of synchro-
nization in solving the feature binding problem, whereby the
neurons representing the visual features of a particular object emit
their spikes clustered closely together in time (Evans & Stringer,
2012, 2013; Kreiter & Singer, 1996). However, in this paper we
have investigated the potential role of polychronization in solving
feature binding, in which subpopulations of neurons (PGs) emit
their spikes in fixed spatiotemporal patterns that repeat across
different presentations of the same stimulus.

In the simulations reported above, we demonstrated that poly-
chronization emerges naturally in the network when distributions
of randomised axonal transmission delays of the order of several
milliseconds are incorporated. The incorporation of such axonal
delays has the effect of flipping the model behaviour from syn-
chronization to polychronization. In particular, we showed that
even if the visual stimuli (circle, heart, and star) presented to the
network were encoded in the input layer by randomized Poisson
spike trains, the synaptic connectivity in the later layers of the
network could still self-organize using STDP during visually
guided learning such that polychronous groups (PGs) emerged
naturally. Moreover, we found that individual PGs learned to
respond to particular stimuli that the network was trained on, that
is, the PGs responded in a stimulus-specific manner.

During each training epoch, each object shape was presented for
2 s to the network while the synaptic weights were adapted using
an STDP learning rule. After 10 epochs of training, the network
had learned stimulus specific representations of each object. The
change in the distribution of the synaptic weights is shown in
Figure 9.

The output (fourth) layer was found to carry more stimulus
information if we assumed a temporal coding based on patterns of
spike times within PGs instead of assuming traditional rate coding
by individual neurons. Our results found that the inclusion of
feedback and lateral connections in the network structure led to an
increase in the number and length of PGs (especially spike-pairs).
In particular, the full network architecture with FF, FB, and LAT
synaptic connections produced the most spike-pair PGs with max-
imal stimulus information. These spike-pair PGs were tuned to
specific stimuli.

A major novel result of the current work is that this self-
organization of stimulus-specific spike-pair PGs occurred even
when the stimulus input representations were randomized Poisson
spike trains, in which the temporal ordering of spikes varied
stochastically across different presentations of the same visual
stimulus. The development of (spike-pair) PGs using STDP during
visual training in such a spiking network is thus a highly robust
process that operates perfectly well with randomized stimulus
spike patterns in the lower stages of processing.

The development of temporal PG codes was shown to be de-
pendent on the temporal specificity of the STDP learning rule used
to modify the synaptic connections. It was found that the network
develops the largest number of spike-pair PGs with maximal

information about which stimulus is presented to the network
when the STDP time constants are shortest (i.e., 5 ms). However,
increasing the STDP time constants in the simulations had the
effect of decreasing the number of object specific spike-pair PGs
that emerged. The explanation for these observations is that in-
creasing the STDP time constants makes the precise timing of the
spikes less important for learning, which, in turn, makes the
synaptic weight modification more similar to traditional Hebbian
learning in a rate-coded model. Consequently, these simulation
results suggest an important role for temporally precise STDP in
the development of temporal coding.

Another novel feature of some of the simulations reported in this
article was the incorporation of multiple synaptic contacts with
different axonal transmission delays between each pair of pre- and
postsynaptic neurons. This corresponds to a presynaptic neuron
making multiple synaptic connections on different parts of the
dendritic branching of a postsynaptic neuron, as is seen among real
neurons in the brain. In such a network architecture, STDP was
able to select which synapses to strengthen and which synapses to
weaken, which promoted the visually guided development of PGs
of spiking neurons. Thus, during self-organization, the network is
able to effectively select for synaptic transmission delays between
pre- and postsynaptic neurons, which results in a greater represen-
tational capacity.

Importantly, the stimulus-specific representations that devel-
oped in the output layer were robust with respect to random jitter
in the input spike patterns, as the visual objects presented to the
network were represented by randomized Poisson spike trains as
described in Training and Stimuli.

Emergence of Binding Neurons

The feature binding problem in visual neuroscience is expressed
by different authors in rather different ways. However, it generally
boils down to the question of how the visual system represents
which features are bound together as part of the same object. For
example, if the two letters T and L are seen together, how does the
visual system represent which horizontal and vertical bars are part
of which letter? Over the last 20 years, our laboratory has devel-
oped a hierarchical, rate-coded neural network model, VisNet, of
the primate ventral visual pathway (Eguchi, Humphreys, &
Stringer, 2016; Galeazzi, Minini, & Stringer, 2015; Wallis &
Rolls, 1997). This network model represents low-level visual
features in the lower layers and higher level features or objects
in the higher layers, but there is no way to identify which
features are part of which objects from the activity of these
neurons. How visual features are bound together must underpin
how we segment a visual scene into objects and parts of objects,
and thus how we make sense of the visual world. Duncan and
Humphreys (1989) provide a good description of this hierar-
chical process as follows:

A fully hierarchical representation is created by repeating segmenta-
tion at different levels of scale. Each structural unit, contained by its
own boundary, is further subdivided into parts by the major bound-
aries within it. Thus, a human body may be subdivided into head,
torso, and limbs, and a hand into palm and fingers. Such subdivision
serves two purposes. The description of a structural unit at one level
of scale (animal, letter, etc.) must depend heavily on the relations
between the parts defined within it (as well as on properties such as
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color or movement that may be common to the parts). Then, at the
next level down, each part becomes a new structural unit to be further
described with its own properties, defined among other things by the
relations between its own sub-parts. At the top of the hierarchy may
be a structural unit corresponding to the whole input scene, described
with a rough set of properties (e.g., division into light sky above and
dark ground below). (p. 445)

The new generation of spiking neural network simulations re-
ported in this article, in which the timings of action potentials or
spikes are explicitly simulated, aim to begin to solve this hierar-
chical feature binding problem. Our basic conception is that within
the PGs that emerge during visually guided learning are embedded
binding neurons that represent the binding relationships between
low-level and high-level visual features. It is assumed that neurons
in the network behave as “coincidence detectors,” in that they
require a volley of spikes from presynaptic cells to arrive simul-
taneously at the postsynaptic cell in order for the postsynaptic cell
to fire itself. The basic three-neuron binding circuit is illustrated in
Figure 3a.

Simulations of the full spiking network architecture (FF �
FB � LAT) presented demonstrated the emergence of binding
neurons, which were part of the same kind of three-neuron binding
circuit as shown in Figure 3a. These simulation results were shown
in Figure 12. In these simulations, the binding neurons represented
the binding relationships between lower level feature neurons in
Layer 3 and higher level feature neurons in Layer 4. Moreover, the
individual PGs, in which these binding neurons were embedded,
responded to specific visual stimuli (the circle, heart or star). Such
binding neurons were originally proposed by von der Malsburg
(1999), but without an explanation of how they might emerge
naturally during visual development. In the simulations reported,
we demonstrated that such binding neurons may develop automat-
ically within the PGs that emerge during visually guided learning
with STDP. In particular, these binding representations were
shown to emerge even when the visual stimuli are encoded by
randomized (Poisson) spike trains in the input layer. The binding
neurons that develop carry measurable information about which
low-level features are driving (and hence part of) which high-level
features. Our theory predicts that such binding neurons should
develop across the visual field, at every layer of the feature
hierarchy, and at every spatial scale within a natural visual image.

The utilisation of polychronisation within a spiking neural net-
work allows the model to develop binding neurons with the crucial
property that they respond if and only if a low-level feature neuron
is actually participating in driving a high-level feature neuron.
Only in this case will the binding neuron be fully informative that
the low-level feature is part of the high-level feature. It is impor-
tant that the binding neuron does not fire whenever the low-level
feature neuron and the high-level feature neuron happen to be
simultaneously active. For example, if the letters T and L are
presented together, then the network dynamics should not activate
the binding neuron linking the low-level feature neuron encoding
the vertical bar of the T (represented in a lower layer) to the
high-level feature neuron encoding the letter L (represented in a
higher layer). For this reason, we propose that binding may not be
soluble within a traditional rate-coded network, but will instead
require the full spiking neuronal dynamics of the brain.

Our model of the primate ventral visual pathway contains
bottom-up, top-down, and lateral synaptic connections in order to
reflect the known architecture of this part of the brain. Given this
kind of connectivity, there are a variety of ways of realizing the
three-neuron binding circuit shown in Figure 3a. For example, the
binding neuron might be in the same layer as the low-level feature
neuron, or in the same layer as the high-level feature neuron, or in
a different area completely. We discuss the feedforwarded projec-
tion of information about low-level features that may occur if the
binding neuron is in the same layer as the high-level feature neuron
(holographic principle). However, wherever the binding neurons
are located, they will carry measurable information about the
binding relations within a visual scene. Moreover, the theory
presented in this article implies that binding neurons will develop
throughout all visual processing areas of the visual cortex, thus
representing the binding relations across the visual field and at
every spatial scale. A rich tapestry of binding neurons through the
layers could help to provide a rich hierarchical structural descrip-
tion of a scene, rather analogous to that described earlier by
Duncan and Humphreys (1989).

The example given in Figure 3a shows how binding neurons may
learn to represent the fact that a particular low-level visual feature
such as a horizontal or vertical bar is driving, and therefore part of, a
given high-level feature such as the letter T. However, binding neu-
rons may learn to represent many other kinds of relationship between
features within an image. For example, a binding neuron might learn
to respond when a low-level feature (such as a vertical bar) is part of
an intermediate-level feature (such as the letter T), which is, in turn,
part of a high-level feature (such as the word CAT). In this case, the
binding neuron receives simultaneous inputs from the low-level,
intermediate, and high-level feature neurons, as shown in Figure 13a.
Alternatively, a binding neuron could represent that a low-level fea-
ture (such as a vertical bar) is simultaneously part of two different
higher level features (such as the letter T and the word CAT), as
shown in Figure 13b. Or a binding neuron could represent that two
low-level features (such as a vertical bar and a horizontal bar) are both
part of a higher level feature (such as the letter T), as shown in Figure
13c. There are a vast number of such relationships that could be
represented by binding neurons. What kinds of relationships actually
get represented will depend on the visual images used to train the
network model. In future research, we will explore what kinds of
binding relationship become represented in the model as it is trained
on lots of natural images. Such binding information is essential to the
rich semantic analysis and interpretation of visual images performed
by the visual brain.

The binding hypothesis proposed in this paper also provides a
way in which the visual system might localise (parts of) objects in
space. The ventral visual pathway of the primate brain is thought
to extract visual features of increasing complexity as one moves up
along the pathway. For example, simple cells in the primary visual
cortex represent oriented bars and edges in localised regions of
retinal space, while neurons in higher stages of visual processing
may represent whole objects or faces in a (location, view and
scale) invariant manner (Booth and Rolls, 1998; Perry et al., 2010;
Wallis and Rolls, 1997). When we look at a visual scene, we are
aware of visual features at all such spatial scales. In particular, we
are aware of the (e.g.\ retinal) locations of low-level features such
as the edges of objects. This kind of information may be repre-
sented by edge detecting (e.g.\ simple) cells in lower visual areas,
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which have small receptive fields of about 1 or 2 degrees in size.
Neurons with such small receptive fields can effectively localise
the edge of an object in space. However, through a process of
feature binding, we also see these edges as parts of the boundaries
of their respective objects. Thus, the binding of a localised edge
represented in an early visual area to an object representation at a
higher stage of processing provides a way in which (the parts of)
objects may be localised in space. And, indeed, neurophysiological
studies have revealed the existence of border ownership cells
(Zhou et al., 2000) in the lower cortical visual areas V1 and V2,
which are thought to play a key role in binding border edges to
objects. Such border ownership cells may be examples of the kind
of binding neurons proposed here. Hence, the development of
binding neurons within polychronous groups as proposed in this
paper provides a plausible explanation for how such binding might
operate and play a key role in the localisation of (parts of) objects
in space.

In the brain, the low-level and high-level visual features may in
fact be represented by their own temporal patterns of spikes
distributed across polychronous group of neurons, and these two
polychronous groups may then drive a third polychronous group
representing the binding relationship between these visual features.
This more complex scenario, in which the visual features and the
binding relations between these features are represented by their
own polychronous groups, is likely to be what actually happens in
the brain. The simple three neuron binding circuit shown in Figure
3a would then be a small part of the three corresponding poly-
chronous groups shown in Figure 3b.

Our new approach to solving the feature binding problem in
biological spiking neural networks relies on polychrony instead of
synchrony. Some previous authors have proposed that a visual
scene could be partitioned into separate object regions by synchro-
nisation of neuronal firing (Kreiter and Singer, 1996; Evans and
Stringer, 2012, 2013). In this scenario, the spikes emitted by the
neurons representing each individual object become synchronised
in time, while the spikes emitted by neurons encoding different
objects become desynchronised. This mechanism of synchronisa-
tion allows a spiking network model to, say, segment and individ-

ually bind several different object regions of an image. However,
we have previously found that such neuronal synchronisation may
be destroyed if we include natural distributions of axonal trans-
mission delays, as we have done in this paper. But more funda-
mentally, how can simply segmenting a visual scene into several
distinct object regions accord with the semantically rich, hierar-
chical visual experience of primate vision as described by Duncan
and Humphreys (1989)? For these reasons, in this paper we have
proposed that feature binding may depend on polychronisation
rather than synchronisation. The use of polychronisation with
binding neurons seems to offer far greater richness in terms of the
structural and semantic representation of visual scenes.

This proposal sharply contrasts with the feature integration theory
of Treisman and Gelade (1980), which posits that that there is only a
single locus of attention within the visual field where visual features
are bound together. Some researchers have tried to relate feature
binding to the speed of visual search for target objects among non-
target distractors. Given that feature integration theory assumes there
is only a single locus of attention where feature binding takes place,
this implies a serial search for a visual search task that requires feature
binding but allows faster parallel search for other search tasks that do
not require feature binding. In contrast, we have proposed that feature
binding is carried out by binding neurons that operate simultaneously
across the whole visual field, including at every spatial scale. In this
case, there is no need for feature binding to be limited to a single
spatial locus of attention although spatial attention may still facilitate
binding at particular retinal locations. If feature binding does occur
across the visual field, then the time taken for visual search would not
be governed by the need to perform a serial search with a single locus
of attention. Instead, binding may operate in parallel across the visual
field, and the search time would be related to other factors determin-
ing the intrinsic difficulty of the task. This is supported by the study
of Duncan and Humphreys (1989). These authors found no clear
dichotomy between serial and parallel modes of search. Instead, they
reported that search efficiency was found to decrease as the targets
became more similar to nontargets, or if the nontargets became more
dissimilar to each other. This finding contradicts the assumption of
feature integration theory that there is a single locus of feature bind-
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Figure 13. Examples of three different kinds of more complex binding relationships. (a) A binding neuron
might learn to respond when a low-level feature (such as a vertical bar) is part of an intermediate-level feature
(such as the letter T), which is, in turn, part of a high-level feature (such as the word CAT). In this case, the
binding neuron receives simultaneous inputs from the low-level, intermediate, and high-level feature neurons. (b)
Alternatively, a binding neuron could represent that a low-level feature (such as a vertical bar) is simultaneously
part of two different higher level features (such as the letter T and the word CAT). (c) A binding neuron could
represent that two low-level features (such as a vertical bar and a horizontal bar) are both part of a higher level
feature (such as the letter T).
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ing, which leads to serial search for those tasks that require feature
binding and parallel search for tasks that do not.

However, although our theory permits feature binding to operate in
parallel across the entire visual field, it would still be expected that
visual processing, which includes feature binding, would be some-
what degraded away from the spatial locus of attention. This could
occur because the neural representation of the part of the visual scene
at the site of spatial attention, which might be highlighted because of
high-acuity foveal fixation or top-down attentional facilitation, would
compete strongly with visual processing of the rest of the scene
through inhibitory interneurons. This strong inhibition from the at-
tended part of the scene would likely degrade visual processing
elsewhere, including feature binding operations. This would explain
various psychophysical findings about binding in human vision
(Wolfe & Cave, 1999). However, this is quite different from the
underlying assumption of feature integration theory, which actually
requires only a single spatial locus of attention to perform feature
binding, and so cannot permit any binding elsewhere.

We do not mean to suggest that this article provides a complete
solution to the feature binding problem. Rather, we believe that the
mechanisms illustrated here point the way toward understanding
feature binding in the visual cortex. The kinds of three-neuron binding
circuits that emerge during visually guided learning, as shown in
Figure 3a, are merely the simplest expression of how poychronization
could encode the hierarchical binding relations between features
within an image. We are at the beginning of exploring this. For
example, as one ascends through the network layers, there appears to
be a rapid increase in the representational capacity, that is, the number
of binding neurons, needed to encode all of the possible binding
relations between features at every spatial scale. This article does not
provide a detailed analysis of how a network such as this one might
resolve the capacity issue. However, we propose a number of hypoth-
eses that follow from this work. For example, as mentioned in the
article, each feature binding representation may take the form of a
polychronous neuronal group. In this case, individual binding neurons
could occur in many binding representations, thus dramatically in-
creasing the representational capacity. One way of investigating this
could be to simulate very-large-scale networks trained on millions of
natural images and analyze the nature of the features represented as
well as the binding relations between them. Moreover, although, in
principle, a spiking neural network model can represent visual fea-
tures and their binding relations across the entire visual field, in the
visual brain, processing is usually focused on the high-acuity foveal
region of the retinal space. Because of the larger number of neurons
devoted to covering this region, we would expect a more fine-grained
representation of visual features and the binding relations between
them here. Additionally, attention may sometimes be covertly di-
rected to some parafoveal region where visual processing, including
feature binding, may then also be enhanced. This might be achieved
through greater structured neuronal activity representing the spatial
locus of visual attention. In this way, spatial attention may contribute
to feature binding at those specific locations. Spatial visual attention,
whether at the fovea or some parafoveal location, may thus play a role
in reducing the capacity needed to process natural images. Neverthe-
less, unlike feature integration theory, our model does allow for a
degree of parallel feature binding some distance from the spatial locus
of attention.

Feedforward Projection of Information About Low-Level
Visual Features to Higher Neuronal Layers

In the simulations presented in this article, we showed that
visual information about low-level features was, in fact, being
propagated up through the neuronal layers of the network in a
similar fashion to that illustrated in Figure 5a. This kind of feed-
forward propagation of low-level visual information may be im-
portant if the behavior-related areas of the brain are restricted to
reading out visual information from only the higher processing
stages of the visual system. As discussed above, low-level visual
features such as oriented bars and edges are represented in the
earliest cortical stages (e.g., V1 and V2) of visual processing.
However, when we perceive an object, we are aware of visual
features at every spatial scale and complexity of visual form. The
simulations reported in this article show how all of this visual
information could, in principle, be projected upward through suc-
cessive stages of visual processing. In particular, the neural rep-
resentation of a low-level feature in the higher layers of the
network encodes both the identity of the low-level feature as well
as its local image context in terms of hierarchical binding relation-
ships to higher level features. For example, in Figure 5a, Binding
Neuron 3 represents the fact that there is a vertical bar in some
localized region of the retina and that this vertical bar is part of the
alphabetic letter T.

The bottom-up projection of low-level visual information
through successive layers of visual processing is an automatic
consequence of our hypothesized solution to the feature binding
problem using polychronization and the emergence of binding
neurons. The most simple mechanism for achieving the bottom-up
projection of low-level visual information is illustrated in Figure
5a. The mechanism is essentially the same as the three-neuron
binding circuit shown in Figure 3a but with the Binding Neuron 3
situated in the same higher layer as Neuron 2 that represents the
high-level feature T. As described, Binding Neuron 3 represents
that there is a vertical bar in some local region of the retina and that
this vertical bar is part of the letter T. Thus, Figure 5a shows how
information about the presence of a low-level feature (i.e., there is
a vertical bar in some localized region of the retina) in the lower
layer has been projected up to the higher layer along with its local
image context (i.e., the vertical bar is part of the letter T). This
proposed mechanism for the bottom-up projection of information
about low-level features could operate through successive cortical
stages of visual processing, including across the visual field and at
every spatial scale.

Simulations of the full network architecture (FF � FB �
LAT) provided examples of this kind of feedforward propaga-
tion of visual information. The binding neurons presented in
rows “a” and “c” of Figure 12 were, in fact, in Layer 4. Thus,
in each of these examples, the low-level feature neuron was in
Layer 3, the high-level feature neuron was in Layer 4, and the
binding neuron was also in Layer 4. In these cases, information
about the low-level feature represented in Layer 3, including its
local image context (i.e., that the low-level feature represented
in Layer 3 is part of the high-level feature represented in Layer
4), is projected onto the binding neuron in Layer 4. These
simulation results confirm the feasibility of the hypothesis that
low-level visual information is propagated forward (i.e.,
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bottom-up) to higher layers in the manner proposed in Feed-
forward projection of information about low-level visual fea-
tures to higher neuronal layers.

Figure 5b shows how the basic mechanism illustrated in Figure
5a could be repeated iteratively up through successive layers in
order to project information about low-level features into the
highest (output) layer of the network. In Figure 5b, visual infor-
mation about the presence of a vertical bar is first projected up
from the first neuronal layer to the second layer, where it is
represented by Binding Neuron 3. Neuron 3 represents the fact that
there is a vertical bar in some localized region of the retina and that
this vertical bar is part of the alphabetic letter T. Then, a similar
binding mechanism combines the output from Binding Neuron 3
with the output of Neuron 5 representing a cat, where these
combined outputs drive Binding Neuron 6. Binding Neuron 6 then
represents the fact that there is a vertical bar in a local region of the
retina, which is part of the letter T, which, in turn, is part of the
word CAT. In this way, the information about the lowest level
feature is projected upward and preserved in the highest layer of
the network. Indeed, it is possible that a large amount of informa-
tion about low-level features could be projected upward in this
manner and preserved in the highest layers for readout by subse-
quent behavioral systems. We refer to this as a holographic prin-
ciple because information about visual features at every level of
complexity and scale may be preserved in the highest (output)
layer(s) of the network. In using the term holographic principle,
we are conscious of a somewhat similar usage to describe the
preservation of information at the event horizon surface of a black
hole (Susskind, 1995).

It is important to note that the Binding Neurons 3 and 6 in the
highest layers of the two network architectures shown in Figures
5a and 5b represent the presence of a vertical bar in some local
region of the retina that is explicitly part of a higher level feature/
object (e.g., the letter T) or hierarchy of features (e.g., the letter T,
which is part of the word CAT). Consequently, such binding
neurons do not simply respond to the presence of a vertical bar at
some retinal location regardless of local image context (i.e., the
higher level features/objects that the vertical bar is part of). The
high-level feature/object still needs to be presented to the network
in order to elicit a response from these kinds of binding neuron in
the upper layers. The holographic principle described here is thus
consistent with neurophysiological observations that neurons in
the later stages of the ventral visual pathway tend to respond to
more complex visual forms than the simple oriented bars repre-
sented in early cortical stages such as V1 and V2.

Lastly, the bottom-up projection of information about low-level
visual features, as illustrated in Figure 5, would seem to negate the
need for top-down synaptic connections in the network architec-
ture. This presents something of a conundrum. If the holographic
principle holds true in some way, then we will need to develop a
theory of how top-down signal transmission fits into this frame-
work. This might lead to much greater complexity in visual
processing than so far considered here. However, we believe
that the observed architecture and neurodynamics of the visual
cortex provide the necessary signposts for eventually under-
standing and simulating the singular semantic richness of bio-
logical vision.

Future Work

The kind of spiking network architecture discussed in this
article seems to be needed to solve the feature binding problem.
In rate-coded models, such as our laboratory’s own VisNet
model, individual postsynaptic neurons do not record which
subset of presynaptic neurons are actually driving them, and,
consequently, the network as a whole does not maintain an
explicit representation of which presynaptic neurons are driving
particular postsynaptic neurons throughout the network. Thus,
in a sense, the rate-coded network “leaks” this essential binding
information, which is necessary for representing, and making
sense of, how the visual features within a scene are related to
each other. This is particularly problematic when postsynaptic
neurons represent high-level visual features (such as a complex
visual form, object, or face) with some degree of transform
(e.g., location, view or scale) invariance, as is typical in the
higher layers of the primate ventral visual pathway (Booth &
Rolls, 1998; Perry, Rolls, & Stringer, 2010; Wallis & Rolls,
1997). It is particularly in this situation that the network needs
to maintain a representation of exactly which presynaptic neu-
rons are driving each postsynaptic neuron in order to represent
the relationships between the lower level and higher level
features throughout the visual field and at every spatial scale. In
the current article, we have not trained the network to develop
transform (e.g., location) invariant responses to the visual stim-
uli. However, we plan to do this in future work when modeling
the development and operation of binding neurons.

Further theoretical evidence that rate coding may be insufficient
to solve feature binding has been provided by Eguchi and Stringer
(2016), who demonstrated the failure of binding within a rate-
coded model of border ownership cells. This class of visual cells,
which have been found in cortical areas V1 and V2, respond to
oriented edges like simple cells but are also modulated by which
side of an object the edge occurs on (Zhou, Friedman, & von der
Heydt, 2000). Such border ownership cells are clearly modulated
by top-down visual signals about local object context from outside
their classical receptive field. Importantly, border ownership cells
are thought to represent the binding relationship between a local-
ized border edge region of an object and the object itself. Eguchi
and Stringer provided a detailed argument for why their rate-coded
model of border ownership cells failed on binding when more than
one object was presented to the network at a time and also
proposed that spiking dynamics would be needed to solve this
problem. In future work, we will explore how border ownership
cells may develop in the kind of spiking network model investi-
gated in this article, where the border ownership cells are perhaps
examples of our hypothesized binding neurons.

A particularly interesting feature of the proposed theories in this
article is that it potentially reveals a sharp contrast between pro-
cessing in the visual brain and the operation of biologically im-
plausible rate-coded neural network algorithms such as backpropa-
gation of error. The architecture of the visual cortex, which is
simulated in the spiking neural network models presented in this
article, could potentially enable the development of binding neu-
rons that represent the binding relationships between low-level and
high-level features at all spatial scales throughout a visual scene.
However, a biologically implausible neural network algorithm
such as rate-coded backpropagation of error (Hertz, Krogh, &
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Palmer, 1991) would not develop binding neurons and so could not
represent such binding information. That is, although rate-coded
networks (trained by backpropagation of error or otherwise) might
be efficient at learning arbitrary mappings, they would not be able
to represent the essential binding information needed to semanti-
cally analyze natural visuospatial scenes in the same way as the
primate brain.

As a first step toward this, in future work, we propose devel-
oping hybrid neural networks that combine the kind of biologically
inspired spiking (unsupervised learning) network presented in this
article with a more traditional engineering (supervised learning)
network such as backpropagation of error. In such a hybrid net-
work, the biological network may operate as a preprocessing stage
that extracts not only the visual features but also the binding
relationships between those features across the visual field and at
every spatial scale. All of this visual information may then be
propagated from the biological network to the engineering network
for, say, image classification.
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Appendix

Data Sharing

The SPIKE simulator can be downloaded from http://oftnai.github.io/Spike/.
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